16 research outputs found

    Fetal Electrocardiogram Signal Extraction by ANFIS Trained with PSO Method

    Get PDF
    Studies indicate that the primary source of distress in pregnent mothers is their concerns about fetus’s condition and health. One way to know about condition of fetus is non-invasive fetal electrocardiogram signal extraction through which the components of fetal electrocardiogram signal are extracted from a signal recorded at abdominal area of mother which is a combination of fetal and maternal electrocardiogram signal and noise source components. The purpose of this study is to propose an algorithm to boost this extraction. To this end, we decomposed electrocardiogram signal to its Intrinsic Mode Functions (IMFs) thruogh Empirical Mode Decomposition algorithm; then, we removed the last and collected the other IMFs to reconstruct electrocardiogram signal without Baseline. Afterwards, we used Particle Swarm Optimization to train and adjust the parameters of Adaptive Neuro-Fuzzy Inference System to model the path that maternal electrocardiogram signal travel to reach abdominal area. Accordingly, we were able to distinguish and remove maternal electrocardiogram signal components from the recorded signal and hence we obtained a good approximation of fetal electrocardiogram signal. We implemented our algorithm and other algorithms on simulated and real signals and found out that, in most cases, the proposed algorithm improved the extraction of fetal electrocardiogram signal.DOI:http://dx.doi.org/10.11591/ijece.v2i2.23

    Fetal electrocardiogram extraction by sequential source separation in the wavelet domain

    Get PDF
    This work addresses the problem of fetal electrocardiogram extraction using blind source separation (BSS) in the wavelet domain. A new approach is proposed, which is particularly advantageous when the mixing environment is noisy and time-varying, and that is shown, analytically and in simulation, to improve the convergence rate of the natural gradient algorithm. The distribution of the wavelet coefficients of the source signals is then modeled by a generalized Gaussian probability density, whereby in the time-scale domain the problem of selecting appropriate nonlinearities when separating mixtures of both sub- and super-Gaussian signals is mitigated, as shown by experimental results

    Improving Maternal and Fetal Cardiac Monitoring Using Artificial Intelligence

    Get PDF
    Early diagnosis of possible risks in the physiological status of fetus and mother during pregnancy and delivery is critical and can reduce mortality and morbidity. For example, early detection of life-threatening congenital heart disease may increase survival rate and reduce morbidity while allowing parents to make informed decisions. To study cardiac function, a variety of signals are required to be collected. In practice, several heart monitoring methods, such as electrocardiogram (ECG) and photoplethysmography (PPG), are commonly performed. Although there are several methods for monitoring fetal and maternal health, research is currently underway to enhance the mobility, accuracy, automation, and noise resistance of these methods to be used extensively, even at home. Artificial Intelligence (AI) can help to design a precise and convenient monitoring system. To achieve the goals, the following objectives are defined in this research: The first step for a signal acquisition system is to obtain high-quality signals. As the first objective, a signal processing scheme is explored to improve the signal-to-noise ratio (SNR) of signals and extract the desired signal from a noisy one with negative SNR (i.e., power of noise is greater than signal). It is worth mentioning that ECG and PPG signals are sensitive to noise from a variety of sources, increasing the risk of misunderstanding and interfering with the diagnostic process. The noises typically arise from power line interference, white noise, electrode contact noise, muscle contraction, baseline wandering, instrument noise, motion artifacts, electrosurgical noise. Even a slight variation in the obtained ECG waveform can impair the understanding of the patient's heart condition and affect the treatment procedure. Recent solutions, such as adaptive and blind source separation (BSS) algorithms, still have drawbacks, such as the need for noise or desired signal model, tuning and calibration, and inefficiency when dealing with excessively noisy signals. Therefore, the final goal of this step is to develop a robust algorithm that can estimate noise, even when SNR is negative, using the BSS method and remove it based on an adaptive filter. The second objective is defined for monitoring maternal and fetal ECG. Previous methods that were non-invasive used maternal abdominal ECG (MECG) for extracting fetal ECG (FECG). These methods need to be calibrated to generalize well. In other words, for each new subject, a calibration with a trustable device is required, which makes it difficult and time-consuming. The calibration is also susceptible to errors. We explore deep learning (DL) models for domain mapping, such as Cycle-Consistent Adversarial Networks, to map MECG to fetal ECG (FECG) and vice versa. The advantages of the proposed DL method over state-of-the-art approaches, such as adaptive filters or blind source separation, are that the proposed method is generalized well on unseen subjects. Moreover, it does not need calibration and is not sensitive to the heart rate variability of mother and fetal; it can also handle low signal-to-noise ratio (SNR) conditions. Thirdly, AI-based system that can measure continuous systolic blood pressure (SBP) and diastolic blood pressure (DBP) with minimum electrode requirements is explored. The most common method of measuring blood pressure is using cuff-based equipment, which cannot monitor blood pressure continuously, requires calibration, and is difficult to use. Other solutions use a synchronized ECG and PPG combination, which is still inconvenient and challenging to synchronize. The proposed method overcomes those issues and only uses PPG signal, comparing to other solutions. Using only PPG for blood pressure is more convenient since it is only one electrode on the finger where its acquisition is more resilient against error due to movement. The fourth objective is to detect anomalies on FECG data. The requirement of thousands of manually annotated samples is a concern for state-of-the-art detection systems, especially for fetal ECG (FECG), where there are few publicly available FECG datasets annotated for each FECG beat. Therefore, we will utilize active learning and transfer-learning concept to train a FECG anomaly detection system with the least training samples and high accuracy. In this part, a model is trained for detecting ECG anomalies in adults. Later this model is trained to detect anomalies on FECG. We only select more influential samples from the training set for training, which leads to training with the least effort. Because of physician shortages and rural geography, pregnant women's ability to get prenatal care might be improved through remote monitoring, especially when access to prenatal care is limited. Increased compliance with prenatal treatment and linked care amongst various providers are two possible benefits of remote monitoring. If recorded signals are transmitted correctly, maternal and fetal remote monitoring can be effective. Therefore, the last objective is to design a compression algorithm that can compress signals (like ECG) with a higher ratio than state-of-the-art and perform decompression fast without distortion. The proposed compression is fast thanks to the time domain B-Spline approach, and compressed data can be used for visualization and monitoring without decompression owing to the B-spline properties. Moreover, the stochastic optimization is designed to retain the signal quality and does not distort signal for diagnosis purposes while having a high compression ratio. In summary, components for creating an end-to-end system for day-to-day maternal and fetal cardiac monitoring can be envisioned as a mix of all tasks listed above. PPG and ECG recorded from the mother can be denoised using deconvolution strategy. Then, compression can be employed for transmitting signal. The trained CycleGAN model can be used for extracting FECG from MECG. Then, trained model using active transfer learning can detect anomaly on both MECG and FECG. Simultaneously, maternal BP is retrieved from the PPG signal. This information can be used for monitoring the cardiac status of mother and fetus, and also can be used for filling reports such as partogram

    Nonlinear Adaptive Signal Processing Improves the Diagnostic Quality of Transabdominal Fetal Electrocardiography

    Get PDF
    The abdominal fetal electrocardiogram (fECG) conveys valuable information that can aid clinicians with the diagnosis and monitoring of a potentially at risk fetus during pregnancy and in childbirth. This chapter primarily focuses on noninvasive (external and indirect) transabdominal fECG monitoring. Even though it is the preferred monitoring method, unlike its classical invasive (internal and direct) counterpart (transvaginal monitoring), it may be contaminated by a variety of undesirable signals that deteriorate its quality and reduce its value in reliable detection of hypoxic conditions in the fetus. A stronger maternal electrocardiogram (the mECG signal) along with technical and biological artifacts constitutes the main interfering signal components that diminish the diagnostic quality of the transabdominal fECG recordings. Currently, transabdominal fECG monitoring relies solely on the determination of the fetus’ pulse or heart rate (FHR) by detecting RR intervals and does not take into account the morphology and duration of the fECG waves (P, QRS, T), intervals, and segments, which collectively convey very useful diagnostic information in adult cardiology. The main reason for the exclusion of these valuable pieces of information in the determination of the fetus’ status from clinical practice is the fact that there are no sufficiently reliable and well-proven techniques for accurate extraction of fECG signals and robust derivation of these informative features. To address this shortcoming in fetal cardiology, we focus on adaptive signal processing methods and pay particular attention to nonlinear approaches that carry great promise in improving the quality of transabdominal fECG monitoring and consequently impacting fetal cardiology in clinical practice. Our investigation and experimental results by using clinical-quality synthetic data generated by our novel fECG signal generator suggest that adaptive neuro-fuzzy inference systems could produce a significant advancement in fetal monitoring during pregnancy and childbirth. The possibility of using a single device to leverage two advanced methods of fetal monitoring, namely noninvasive cardiotocography (CTG) and ST segment analysis (STAN) simultaneously, to detect fetal hypoxic conditions is very promising

    QRS classification and spatial combination for robust heart rate detection in low-quality fetal ECG recordings

    Get PDF
    Non-invasive fetal electrocardiography (ECG) can be used for prolonged monitoring of the fetal heart rate (FHR). However, the signal-to-noise-ratio (SNR) of non-invasive ECG recordings is often insufficient for reliable detection of the FHR. To overcome this problem, source separation techniques can be used to enhance the fetal ECG. This study uses a physiology-based source separation (PBSS) technique that has already been demonstrated to outperform widely used blind source separation techniques. Despite the relatively good performance of PBSS in enhancing the fetal ECG, PBSS is still susceptible to artifacts. In this study an augmented PBSS technique is developed to reduce the influence of artifacts. The performance of the developed method is compared to PBSS on multi-channel non-invasive fetal ECG recordings. Based on this comparison, the developed method is shown to outperform PBSS for the enhancement of the fetal ECG

    Extraction et débruitage de signaux ECG du foetus.

    Get PDF
    Les malformations cardiaques congénitales sont la première cause de décès liés à une anomalie congénitale. L electrocardiogramme du fœtus (ECGf), qui est censé contenir beaucoup plus d informations par rapport aux méthodes échographiques conventionnelles, peut être mesuré e par des électrodes sur l abdomen de la mère. Cependant, il est tres faible et mélangé avec plusieurs sources de bruit et interférence y compris l ECG de la mère (ECGm) dont le niveau est très fort. Dans les études précédentes, plusieurs méthodes ont été proposées pour l extraction de l ECGf à partir des signaux enregistrés par des électrodes placées à la surface du corps de la mère. Cependant, ces méthodes nécessitent un nombre de capteurs important, et s avèrent inefficaces avec un ou deux capteurs. Dans cette étude trois approches innovantes reposant sur une paramétrisation algébrique, statistique ou par variables d état sont proposées. Ces trois méthodes mettent en œuvre des modélisations différentes de la quasi-périodicité du signal cardiaque. Dans la première approche, le signal cardiaque et sa variabilité sont modélisés par un filtre de Kalman. Dans la seconde approche, le signal est découpé en fenêtres selon les battements, et l empilage constitue un tenseur dont on cherchera la décomposition. Dans la troisième approche, le signal n est pas modélisé directement, mais il est considéré comme un processus Gaussien, caractérisé par ses statistiques à l ordre deux. Dans les différentes modèles, contrairement aux études précédentes, l ECGm et le (ou les) ECGf sont modélisés explicitement. Les performances des méthodes proposées, qui utilisent un nombre minimum de capteurs, sont évaluées sur des données synthétiques et des enregistrements réels, y compris les signaux cardiaques des fœtus jumeaux.Congenital heart defects are the leading cause of birth defect-related deaths. The fetal electrocardiogram (fECG), which is believed to contain much more information as compared with conventional sonographic methods, can be measured by placing electrodes on the mother s abdomen. However, it has very low power and is mixed with several sources of noise and interference, including the strong maternal ECG (mECG). In previous studies, several methods have been proposed for the extraction of fECG signals recorded from the maternal body surface. However, these methods require a large number of sensors, and are ineffective with only one or two sensors. In this study, state modeling, statistical and deterministic approaches are proposed for capturing weak traces of fetal cardiac signals. These three methods implement different models of the quasi-periodicity of the cardiac signal. In the first approach, the heart rate and its variability are modeled by a Kalman filter. In the second approach, the signal is divided into windows according to the beats. Stacking the windows constructs a tensor that is then decomposed. In a third approach, the signal is not directly modeled, but it is considered as a Gaussian process characterized by its second order statistics. In all the different proposed methods, unlike previous studies, mECG and fECG(s) are explicitly modeled. The performances of the proposed methods, which utilize a minimal number of electrodes, are assessed on synthetic data and actual recordings including twin fetal cardiac signals.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Blind separation for fetal ECG from single mixture by SVD and ICA

    Get PDF
    Master'sMASTER OF SCIENC
    corecore