14 research outputs found

    A note on the 2-circulant inequalities for the max-cut problem

    Get PDF
    The max-cut problem is a much-studied NP-hard combinatorial optimisation problem. Poljak and Turzik found some facet-defining inequalities for this problem, which we call 2-circulant inequalities. Two polynomial-time separation algorithms have been found for these inequalities, but one is very slow and the other is very complicated. We present a third algorithm, which is as fast as the faster of the existing two, but much simpler

    Subject Index Volumes 1–200

    Get PDF

    Lifted edges as connectivity priors for multicut and disjoint paths

    Get PDF
    This work studies graph decompositions and their representation by 0/1 labeling of edges. We study two problems. The first is multicut (MC) which represents decompositions of undirected graphs (clustering of nodes into connected components). The second is disjoint paths (DP) in directed acyclic graphs where the clusters correspond to node- disjoint paths. Unlike an alternative representation by node labeling, the number of clusters is not part of the input but is fully determined by the costs of edges. Our main interest is to study connectivity priors represented by so-called lifted edges in the two problems. The cost of a lifted edge expresses whether its endpoints should belong to the same cluster (path) in the optimal decomposition. We call the resulting problems lifted multicut (LMC) and lifted disjoint paths (LDP). The extension of MC to LMC was originally motivated by image segmentation where the information about the connectivity between non-neighboring pixels or superpixels led to a significant quality improvement. After that, LMC was successfully applied to other problems like multiple object tracking (MOT) which is also the main application of our proposed LDP model. Our study of lifted multicut concentrates on partial LMC represented by labeling of a subset of (lifted) edges. Given partial labeling, we conclude that deciding whether a complete LMC consistent with the partial labels exists is NP-complete. Similarly, we conclude that deciding whether an unlabeled edge exists such that its label is determined by the labels of other edges is NP-hard. After that, we present metrics for comparing (partial) graph decompositions. Finally, we study the properties of the LMC polytope. The largest part of this work is dedicated to the proposed LDP problem. We prove that this problem is NP-hard and propose an optimal integer linear programming (ILP) solver. In order to enable its global optimization, we formulate several classes of linear inequalities that produce a high-quality LP relaxation. Additionally, we propose efficient cutting plane algorithms for separating the proposed linear inequalities. Despite the advanced constraints and efficient separation routines, the general time complexity of our optimal ILP solver remains exponential. In order to solve even larger instances, we introduce an approximate LDP solver based on Lagrange decomposition. LDP is a convenient model for MOT because the underlying disjoint paths model naturally leads to trajectories of objects. Moreover, lifted edges encode long-range temporal interactions and thus help to prevent id switches and re-identify persons. Our tracker using the optimal LDP solver achieves nearly optimal assignments w.r.t. input detections. Consequently, it was a leading tracker on three benchmarks of the MOT challenge MOT15/16/17, improving significantly over state-of-the-art at the time of its publication. Our approximate LDP solver enables us to process the MOT15/16/17 benchmarks without sacrificing solution quality and allows for solving large and dense instances of a challenging dataset MOT20. On all these four standard MOT benchmarks we achieved performance comparable or better than state-of-the-art methods (at the time of publication) including our tracker based on the optimal LDP solver.Diese Arbeit studiert Graphenzerlegungen und ihre ReprĂ€sentation durch 0/1-wertige Kantenbelegungen. Das erste Problem ist das Mehrfachschnittproblem. Es reprĂ€sentiert Zerlegungen von ungerichteten Graphen (Cluster von Knoten sodass jeder Cluster eine Zusammenhangskomponente reprĂ€sentiert). Das zweite Problem ist die Suche von disjunkten Pfaden in einem gerichteten azyklischen Graph in dem die Cluster knotendisjunkten Pfaden entsprechen. Im Unterschied zu der alternativen ReprĂ€sentation durch Knotenbelegungen ist die Zahl von Clustern nicht im Voraus gegeben, sondern sie ist abhĂ€ngig von den Kosten der Kanten. Der Fokus dieser Arbeit ist die Erforschung von hochgezogenen Kannten, die eine apriori Information ĂŒber Verbundenheit von Knoten in Clustern respektive durch Pfade in den zwei Problemen darstellen. Die Kosten einer hochgezogenen Kante drĂŒcken aus, ob ihre Knoten zu dem gleichen Cluster (Pfad) in der optimalen Zerlegung gehören sollten. Wir bezeichnen diese neuen Probleme als das hochgezogene Mehrfachschnittproblem und das Problem der hochgezogenen disjunkten Pfade. Die Erweiterung des Mehrfachschnittproblems zu dem hochgezogenen Mehrfachschnittproblem wurde ursprĂŒnglich durch die Bildsegmentierung motiviert, fĂŒr die die Information ĂŒber Verbundenheit von nicht benachbarten Pixeln oder Superpixeln zu einer bedeutenden Verbesserung der QualitĂ€t fĂŒhrte. Danach wurde das hochgezogene Mehrfachschnittproblem zu der Lösung von anderen Problemen wie zum Beispiel der Verfolgung von mehreren Objekten in einem Video angewendet. Diese Aufgabe ist auch die Hauptanwendung des vorgeschlagenen Problems der hochgezogenen disjunkte Pfade. In unserer Untersuchung des hochgezogenen Mehrfachschnittproblems konzentrieren wir uns auf das teilweise hochgezogene Mehrfachschnittproblem. Das Problem wird durch eine Belegung einer Teilmenge der (hochgezogenen) Kanten reprĂ€sentiert. Wir beweisen, dass es NP-vollstĂ€ndig ist zu entscheiden, ob ein kompletter hochgezogener Mehrfachschnitt existiert, der einer gegebenen teilweisen Kantenbezeichnung entspricht. In analogerWeise beweisen wir, dass es NP-schwer ist zu entscheiden, ob eine nicht belegte Kante existiert, deren Belegung durch die Belegungen anderer Kanten entschieden ist. Danach prĂ€sentieren wir Metriken zum Vergleich von (teilweisen) Graphenzerlegungen. Schließlich untersuchen wir Eigenschaften des hochgezogenen Mehrfachschnitt-Polytops. Der grĂ¶ĂŸte Teil dieser Arbeit widmet sich dem von uns vorgeschlagenen Problem der hochgezogenen disjunkten Pfade. Wir beweisen, dass es NP-schwer ist. Wir formulieren es als ein ganzzahliges lineares Optimierungsproblem und implementieren ein Programm fĂŒr dessen optimale Lösung. Um die globale Optimierung zu ermöglichen, formulieren wir mehrere Klassen von linearen Ungleichungen, die zu einer linearen Relaxierung mit einer hohen QualitĂ€t fĂŒhren. ZusĂ€tzlich prĂ€sentieren wir ein effektives Schnittebenenverfahren fĂŒr die Separierung der vorgeschlagenen Ungleichungen. Trotz der fortgeschrittenen Ungleichungen und der Effizienz der Schnittebenenseparierung in unserem optimalen Löser bleibt die allgemeine KomplexitĂ€t des Algorithmus exponentiell. Um noch kompliziertere Instanzen zu lösen, prĂ€sentieren wir einen approximativen Löser, der auf Lagrange-DualitĂ€t aufbaut. Hochgezogene disjunkte Pfade sind ein praktisches Modell fĂŒr die Verfolgung von mehreren Objekten, weil die disjunkten Pfade eine natĂŒrliche ReprĂ€sentation von Trajektorien der Objekten darstellen. Außerdem reprĂ€sentieren die hochgezogenen Kanten Interaktionen einer langen zeitlichen Reichweite. Deswegen helfen sie dieselbe Person in zeitlich weiter auseinander liegenden Zeitpunkten wieder zu identifizieren und Verwechselungen ihrer IdentitĂ€t zu verhindern. Aus diesem Grund war unsere Methode zur Zeit ihrer Publikation die beste fĂŒr drei VergleichsdatensĂ€tzen MOT Challenge MOT15/16/17 fĂŒr die Verfolgung von mehreren Objekten. Im Vergleich zu den bisherigen besten Methoden war ihre Leistung sogar bedeutend höher. Unsere approximative Methode fĂŒr hochgezogene disjunkte Pfade ermöglicht uns die VergleichsdatensĂ€tzen MOT15/16/17 zu verarbeiten ohne die QualitĂ€t der Lösungen zu vermindern und erlaubt uns, die großen Instanzen mit hoher Personendichte des anspruchsvolleren Datensatzes MOT20 zu lösen. Zur Zeit ihrer Publikation erreichte die Methode vergleichbare oder bessere Ergebnisse als die bisherigen besten Methoden einschließlich unseres optimalen Löser fĂŒr hochgezogene disjunkte Pfade

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Enabling the Development and Implementation of Digital Twins : Proceedings of the 20th International Conference on Construction Applications of Virtual Reality

    Get PDF
    Welcome to the 20th International Conference on Construction Applications of Virtual Reality (CONVR 2020). This year we are meeting on-line due to the current Coronavirus pandemic. The overarching theme for CONVR2020 is "Enabling the development and implementation of Digital Twins". CONVR is one of the world-leading conferences in the areas of virtual reality, augmented reality and building information modelling. Each year, more than 100 participants from all around the globe meet to discuss and exchange the latest developments and applications of virtual technologies in the architectural, engineering, construction and operation industry (AECO). The conference is also known for having a unique blend of participants from both academia and industry. This year, with all the difficulties of replicating a real face to face meetings, we are carefully planning the conference to ensure that all participants have a perfect experience. We have a group of leading keynote speakers from industry and academia who are covering up to date hot topics and are enthusiastic and keen to share their knowledge with you. CONVR participants are very loyal to the conference and have attended most of the editions over the last eighteen editions. This year we are welcoming numerous first timers and we aim to help them make the most of the conference by introducing them to other participants

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity
    corecore