159,989 research outputs found

    Techniques for noise removal from EEG, EOG and air flow signals in sleep patients

    Full text link
    Noise is present in the wide variety of signals obtained from sleep patients. This noise comes from a number of sources, from presence of extraneous signals to adjustments in signal amplification and shot noise in the circuits used for data collection. The noise needs to be removed in order to maximize the information gained about the patient using both manual and automatic analysis of the signals. Here we evaluate a number of new techniques for removal of that noise, and the associated problem of separating the original signal sources.Comment: 9 pages, 3 figure

    Word Adjacency Graph Modeling: Separating Signal From Noise in Big Data

    Get PDF
    There is a need to develop methods to analyze Big Data to inform patient-centered interventions for better health outcomes. The purpose of this study was to develop and test a method to explore Big Data to describe salient health concerns of people with epilepsy. Specifically, we used Word Adjacency Graph modeling to explore a data set containing 1.9 billion anonymous text queries submitted to the ChaCha question and answer service to (a) detect clusters of epilepsy-related topics, and (b) visualize the range of epilepsy-related topics and their mutual proximity to uncover the breadth and depth of particular topics and groups of users. Applied to a large, complex data set, this method successfully identified clusters of epilepsy-related topics while allowing for separation of potentially non-relevant topics. The method can be used to identify patient-driven research questions from large social media data sets and results can inform the development of patient-centered interventions

    EMD-based filtering (EMDF) of low-frequency noise for speech enhancement

    Get PDF
    An Empirical Mode Decomposition based filtering (EMDF) approach is presented as a post-processing stage for speech enhancement. This method is particularly effective in low frequency noise environments. Unlike previous EMD based denoising methods, this approach does not make the assumption that the contaminating noise signal is fractional Gaussian Noise. An adaptive method is developed to select the IMF index for separating the noise components from the speech based on the second-order IMF statistics. The low frequency noise components are then separated by a partial reconstruction from the IMFs. It is shown that the proposed EMDF technique is able to suppress residual noise from speech signals that were enhanced by the conventional optimallymodified log-spectral amplitude approach which uses a minimum statistics based noise estimate. A comparative performance study is included that demonstrates the effectiveness of the EMDF system in various noise environments, such as car interior noise, military vehicle noise and babble noise. In particular, improvements up to 10 dB are obtained in car noise environments. Listening tests were performed that confirm the results

    Noise reduction in chaotic time series by a local projection with nonlinear constraints

    Full text link
    On the basis of a local-projective (LP) approach we develop a method of noise reduction in time series that makes use of nonlinear constraints appearing due to the deterministic character of the underlying dynamical system. The Delaunay triangulation approach is used to find the optimal nearest neighboring points in time series. The efficiency of our method is comparable to standard LP methods but our method is more robust to the input parameter estimation. The approach has been successfully applied for separating a signal from noise in the chaotic Henon and Lorenz models as well as for noisy experimental data obtained from an electronic Chua circuit. The method works properly for a mixture of additive and dynamical noise and can be used for the noise-level detection.Comment: 11 pages, 12 figures. See http://www.chaosandnoise.or

    Analyse des signaux AM-FM basée sur une version B-splines de l'EMD-ESA

    Get PDF
    In this paper a signal analysis framework for estimating time-varying amplitude and frequency functions of multicomponent amplitude and frequency modulated (AM–FM) signals is introduced. This framework is based on local and non-linear approaches, namely Energy Separation Algorithm (ESA) and Empirical Mode Decomposition (EMD). Conjunction of Discrete ESA (DESA) and EMD is called EMD–DESA. A new modified version of EMD where smoothing instead of an interpolation to construct the upper and lower envelopes of the signal is introduced. Since extracted IMFs are represented in terms of B-spline (BS) expansions, a closed formula of ESA robust against noise is used. Instantaneous Frequency (IF) and Instantaneous Amplitude (IA) estimates of a multi- component AM–FM signal, corrupted with additive white Gaussian noise of varying SNRs, are analyzed and results compared to ESA, DESA and Hilbert transform-based algorithms. SNR and MSE are used as figures of merit. Regularized BS version of EMD– ESA performs reasonably better in separating IA and IF components compared to the other methods from low to high SNR. Overall, obtained results illustrate the effective- ness of the proposed approach in terms of accuracy and robustness against noise to track IF and IA features of a multicomponent AM–FM signal

    Bolt Detection Signal Analysis Method Based on ICEEMD

    Full text link
    The construction quality of the bolt is directly related to the safety of the project, and as such, it must be tested. In this paper, the improved complete ensemble empirical mode decomposition (ICEEMD) method is introduced to the bolt detection signal analysis. The ICEEMD is used in order to decompose the anchor detection signal according to the approximate entropy of each intrinsic mode function (IMF). The noise of the IMFs is eliminated by the wavelet soft threshold de-noising technique. Based on the approximate entropy, and the wavelet de-noising principle, the ICEEMD-De anchor signal analysis method is proposed. From the analysis of the vibration analog signal, as well as the bolt detection signal, the result shows that the ICEEMD-De method is capable of correctly separating the different IMFs under noisy conditions, and also that the IMF can effectively identify the reflection signal of the end of the bolt

    Separating signal from noise: the challenge of identifying useful biomarkers in sepsis

    Get PDF
    Abstract Sepsis diagnosis remains based largely on clinical presentation despite significant advances in the understanding of underlying pathophysiology and host-pathogen interactions. The systematic review article by Zonneveld and colleagues in the previous issue of Critical Care describes another potential avenue of study for using biomarkers for sepsis diagnosis and prognostication. Soluble leukocyte adhesion molecules and their associated sheddase enzymes vary in detectable levels and activity in patients in relation to immunologic status, age, and systemic inflammation, including in the setting of sepsis. Unfortunately, studies of these molecules as diagnostic or prognostic aids (or both) in sepsis have thus far been disappointing. Zonneveld and colleagues propose two potential avenues to enhance the performance characteristics of soluble adhesion molecules and their sheddases in sepsis diagnosis and prognosis: (a) identifying age-adjusted normal values for soluble leukocyte adhesion molecules and their sheddases and (b) investigating simultaneous measurement of both soluble adhesion molecules and sheddases in integrated sepsis evaluation schema. This commentary discusses the proposed solutions of Zonneveld and colleagues in more detail and outlines additional considerations that should be addressed in order to develop robust and valid diagnostic and prognostic tools for clinicians managing patients with sepsis.Peer Reviewe

    Discriminating between a Stochastic Gravitational Wave Background and Instrument Noise

    Full text link
    The detection of a stochastic background of gravitational waves could significantly impact our understanding of the physical processes that shaped the early Universe. The challenge lies in separating the cosmological signal from other stochastic processes such as instrument noise and astrophysical foregrounds. One approach is to build two or more detectors and cross correlate their output, thereby enhancing the common gravitational wave signal relative to the uncorrelated instrument noise. When only one detector is available, as will likely be the case with the Laser Interferometer Space Antenna (LISA), alternative analysis techniques must be developed. Here we show that models of the noise and signal transfer functions can be used to tease apart the gravitational and instrument noise contributions. We discuss the role of gravitational wave insensitive "null channels" formed from particular combinations of the time delay interferometry, and derive a new combination that maintains this insensitivity for unequal arm length detectors. We show that, in the absence of astrophysical foregrounds, LISA could detect signals with energy densities as low as Ωgw=6×10−13\Omega_{\rm gw} = 6 \times 10^{-13} with just one month of data. We describe an end-to-end Bayesian analysis pipeline that is able to search for, characterize and assign confidence levels for the detection of a stochastic gravitational wave background, and demonstrate the effectiveness of this approach using simulated data from the third round of Mock LISA Data Challenges.Comment: 10 Pages, 10 Figure
    • …
    corecore