4,780 research outputs found

    Geodesic-Preserving Polygon Simplification

    Full text link
    Polygons are a paramount data structure in computational geometry. While the complexity of many algorithms on simple polygons or polygons with holes depends on the size of the input polygon, the intrinsic complexity of the problems these algorithms solve is often related to the reflex vertices of the polygon. In this paper, we give an easy-to-describe linear-time method to replace an input polygon P\mathcal{P} by a polygon P′\mathcal{P}' such that (1) P′\mathcal{P}' contains P\mathcal{P}, (2) P′\mathcal{P}' has its reflex vertices at the same positions as P\mathcal{P}, and (3) the number of vertices of P′\mathcal{P}' is linear in the number of reflex vertices. Since the solutions of numerous problems on polygons (including shortest paths, geodesic hulls, separating point sets, and Voronoi diagrams) are equivalent for both P\mathcal{P} and P′\mathcal{P}', our algorithm can be used as a preprocessing step for several algorithms and makes their running time dependent on the number of reflex vertices rather than on the size of P\mathcal{P}

    Subclass Discriminant Analysis of Morphological and Textural Features for HEp-2 Staining Pattern Classification

    Get PDF
    Classifying HEp-2 fluorescence patterns in Indirect Immunofluorescence (IIF) HEp-2 cell imaging is important for the differential diagnosis of autoimmune diseases. The current technique, based on human visual inspection, is time-consuming, subjective and dependent on the operator's experience. Automating this process may be a solution to these limitations, making IIF faster and more reliable. This work proposes a classification approach based on Subclass Discriminant Analysis (SDA), a dimensionality reduction technique that provides an effective representation of the cells in the feature space, suitably coping with the high within-class variance typical of HEp-2 cell patterns. In order to generate an adequate characterization of the fluorescence patterns, we investigate the individual and combined contributions of several image attributes, showing that the integration of morphological, global and local textural features is the most suited for this purpose. The proposed approach provides an accuracy of the staining pattern classification of about 90%

    Automatic normal orientation in point clouds of building interiors

    Full text link
    Orienting surface normals correctly and consistently is a fundamental problem in geometry processing. Applications such as visualization, feature detection, and geometry reconstruction often rely on the availability of correctly oriented normals. Many existing approaches for automatic orientation of normals on meshes or point clouds make severe assumptions on the input data or the topology of the underlying object which are not applicable to real-world measurements of urban scenes. In contrast, our approach is specifically tailored to the challenging case of unstructured indoor point cloud scans of multi-story, multi-room buildings. We evaluate the correctness and speed of our approach on multiple real-world point cloud datasets

    Multi-Agent Deployment for Visibility Coverage in Polygonal Environments with Holes

    Full text link
    This article presents a distributed algorithm for a group of robotic agents with omnidirectional vision to deploy into nonconvex polygonal environments with holes. Agents begin deployment from a common point, possess no prior knowledge of the environment, and operate only under line-of-sight sensing and communication. The objective of the deployment is for the agents to achieve full visibility coverage of the environment while maintaining line-of-sight connectivity with each other. This is achieved by incrementally partitioning the environment into distinct regions, each completely visible from some agent. Proofs are given of (i) convergence, (ii) upper bounds on the time and number of agents required, and (iii) bounds on the memory and communication complexity. Simulation results and description of robust extensions are also included

    On the Power of Manifold Samples in Exploring Configuration Spaces and the Dimensionality of Narrow Passages

    Full text link
    We extend our study of Motion Planning via Manifold Samples (MMS), a general algorithmic framework that combines geometric methods for the exact and complete analysis of low-dimensional configuration spaces with sampling-based approaches that are appropriate for higher dimensions. The framework explores the configuration space by taking samples that are entire low-dimensional manifolds of the configuration space capturing its connectivity much better than isolated point samples. The contributions of this paper are as follows: (i) We present a recursive application of MMS in a six-dimensional configuration space, enabling the coordination of two polygonal robots translating and rotating amidst polygonal obstacles. In the adduced experiments for the more demanding test cases MMS clearly outperforms PRM, with over 20-fold speedup in a coordination-tight setting. (ii) A probabilistic completeness proof for the most prevalent case, namely MMS with samples that are affine subspaces. (iii) A closer examination of the test cases reveals that MMS has, in comparison to standard sampling-based algorithms, a significant advantage in scenarios containing high-dimensional narrow passages. This provokes a novel characterization of narrow passages which attempts to capture their dimensionality, an attribute that had been (to a large extent) unattended in previous definitions.Comment: 20 page

    Supporting Focus and Context Awareness in 3D Modelling Tasks Using Multi-Layered Displays

    Get PDF
    Most 3D modelling software have been developed for conventional 2D displays, and as such, lack support for true depth perception. This contributes to making polygonal 3D modelling tasks challenging, particularly when models are complex and consist of a large number of overlapping components (e.g. vertices, edges) and objects (i.e. parts). Research has shown that users of 3D modelling software often encounter a range of difficulties, which collectively can be defined as focus and context awareness problems. These include maintaining position and orientation awarenesses, as well as recognizing distance between individual components and objects in 3D spaces. In this paper, we present five visualization and interaction techniques we have developed for multi-layered displays, to better support focus and context awareness in 3D modelling tasks. The results of a user study we conducted shows that three of these five techniques improve users' 3D modelling task performance

    Convex Hulls in Polygonal Domains

    Get PDF
    We study generalizations of convex hulls to polygonal domains with holes. Convexity in Euclidean space is based on the notion of shortest paths, which are straight-line segments. In a polygonal domain, shortest paths are polygonal paths called geodesics. One possible generalization of convex hulls is based on the "rubber band" conception of the convex hull boundary as a shortest curve that encloses a given set of sites. However, it is NP-hard to compute such a curve in a general polygonal domain. Hence, we focus on a different, more direct generalization of convexity, where a set X is geodesically convex if it contains all geodesics between every pair of points x,y in X. The corresponding geodesic convex hull presents a few surprises, and turns out to behave quite differently compared to the classic Euclidean setting or to the geodesic hull inside a simple polygon. We describe a class of geometric objects that suffice to represent geodesic convex hulls of sets of sites, and characterize which such domains are geodesically convex. Using such a representation we present an algorithm to construct the geodesic convex hull of a set of O(n) sites in a polygonal domain with a total of n vertices and h holes in O(n^3h^{3+epsilon}) time, for any constant epsilon > 0
    • …
    corecore