2,311 research outputs found

    Autoreducibility of NP-Complete Sets

    Get PDF
    We study the polynomial-time autoreducibility of NP-complete sets and obtain separations under strong hypotheses for NP. Assuming there is a p-generic set in NP, we show the following: - For every k2k \geq 2, there is a kk-T-complete set for NP that is kk-T autoreducible, but is not kk-tt autoreducible or (k1)(k-1)-T autoreducible. - For every k3k \geq 3, there is a kk-tt-complete set for NP that is kk-tt autoreducible, but is not (k1)(k-1)-tt autoreducible or (k2)(k-2)-T autoreducible. - There is a tt-complete set for NP that is tt-autoreducible, but is not btt-autoreducible. Under the stronger assumption that there is a p-generic set in NP \cap coNP, we show: - For every k2k \geq 2, there is a kk-tt-complete set for NP that is kk-tt autoreducible, but is not (k1)(k-1)-T autoreducible. Our proofs are based on constructions from separating NP-completeness notions. For example, the construction of a 2-T-complete set for NP that is not 2-tt-complete also separates 2-T-autoreducibility from 2-tt-autoreducibility

    Separating Cook Completeness from Karp-Levin Completeness Under a Worst-Case Hardness Hypothesis

    Get PDF
    We show that there is a language that is Turing complete for NP but not many-one complete for NP, under a worst-case hardness hypothesis. Our hypothesis asserts the existence of a non-deterministic, double-exponential time machine that runs in time O(2^2^n^c) (for some c > 1) accepting Sigma^* whose accepting computations cannot be computed by bounded-error, probabilistic machines running in time O(2^2^{beta * 2^n^c) (for some beta > 0). This is the first result that separates completeness notions for NP under a worst-case hardness hypothesis

    NP-Completeness, Proof Systems, and Disjoint NP-Pairs

    Get PDF

    Nonuniform Reductions and NP-Completeness

    Get PDF
    Nonuniformity is a central concept in computational complexity with powerful connections to circuit complexity and randomness. Nonuniform reductions have been used to study the isomorphism conjecture for NP and completeness for larger complexity classes. We study the power of nonuniform reductions for NP0completeness, obtaining both separations and upper bounds for nonuniform completeness vs uniform complessness in NP. Under various hypotheses, we obtain the following separations: 1. There is a set complete for NP under nonuniform many-one reductions, but not under uniform many-one reductions. This is true even with a single bit of nonuniform advice. 2. There is a set complete for NP under nonuniform many-one reductions with polynomial-size advice, but not under uniform Turing reductions. That is, polynomial nonuniformity is stronger than a polynomial number of queries. 3. For any fixed polynomial p(n), there is a set complete for NP under uniform 2-truth-table reductions, but not under nonuniform many-one reductions that use p(n) advice. That is, giving a uniform reduction a second query makes it more powerful than a nonuniform reduction with fixed polynomial advice. 4. There is a set complete for NP under nonuniform many-one reductions with polynomial ad- vice, but not under nonuniform many-one reductions with logarithmic advice. This hierarchy theorem also holds for other reducibilities, such as truth-table and Turing. We also consider uniform upper bounds on nonuniform completeness. Hirahara (2015) showed that unconditionally every set that is complete for NP under nonuniform truth-table reductions that use logarithmic advice is also uniformly Turing-complete. We show that under a derandomization hypothesis, the same statement for truth-table reductions and truth-table completeness also holds

    The Deduction Theorem for Strong Propositional Proof Systems

    Get PDF
    This paper focuses on the deduction theorem for propositional logic. We define and investigate different deduction properties and show that the presence of these deduction properties for strong proof systems is powerful enough to characterize the existence of optimal and even polynomially bounded proof systems. We also exhibit a similar, but apparently weaker condition that implies the existence of complete disjoint NPUnknown control sequence '\mathsf' -pairs. In particular, this yields a sufficient condition for the completeness of the canonical pair of Frege systems and provides a general framework for the search for complete NPUnknown control sequence '\mathsf' -pairs

    Resource Bounded Immunity and Simplicity

    Get PDF
    Revisiting the thirty years-old notions of resource-bounded immunity and simplicity, we investigate the structural characteristics of various immunity notions: strong immunity, almost immunity, and hyperimmunity as well as their corresponding simplicity notions. We also study limited immunity and simplicity, called k-immunity and feasible k-immunity, and their simplicity notions. Finally, we propose the k-immune hypothesis as a working hypothesis that guarantees the existence of simple sets in NP.Comment: This is a complete version of the conference paper that appeared in the Proceedings of the 3rd IFIP International Conference on Theoretical Computer Science, Kluwer Academic Publishers, pp.81-95, Toulouse, France, August 23-26, 200
    corecore