52 research outputs found

    Boundaries of VP and VNP

    Get PDF
    One fundamental question in the context of the geometric complexity theory approach to the VP vs. VNP conjecture is whether VP = VP, where VP is the class of families of polynomials that can be computed by arithmetic circuits of polynomial degree and size, and VP is the class of families of polynomials that can be approximated infinitesimally closely by arithmetic circuits of polynomial degree and size. The goal of this article is to study the conjecture in (Mulmuley, FOCS 2012) that VP is not contained in VP. Towards that end, we introduce three degenerations of VP (i.e., sets of points in VP), namely the stable degeneration Stable-VP, the Newton degeneration Newton-VP, and the p-definable one-parameter degeneration VP∗. We also introduce analogous degenerations of VNP. We show that Stable-VP ⊆ Newton-VP ⊆ VP∗ ⊆ VNP, and Stable-VNP = Newton-VNP = VNP∗ = VNP. The three notions of degenerations and the proof of this result shed light on the problem of separating VP from VP. Although we do not yet construct explicit candidates for the polynomial families in VP \VP, we prove results which tell us where not to look for such families. Specifically, we demonstrate that the families in Newton-VP \VP based on semi-invariants of quivers would have to be nongeneric by showing that, for many finite quivers (including some wild ones), Newton degeneration of any generic semi-invariant can be computed by a circuit of polynomial size. We also show that the Newton degenerations of perfect matching Pfaffians, monotone arithmetic circuits over the reals, and Schur polynomials have polynomial-size circuits

    Log-concavity and lower bounds for arithmetic circuits

    Get PDF
    One question that we investigate in this paper is, how can we build log-concave polynomials using sparse polynomials as building blocks? More precisely, let f=_i=0da_iXiR+[X]f = \sum\_{i = 0}^d a\_i X^i \in \mathbb{R}^+[X] be a polynomial satisfying the log-concavity condition a\_i^2 \textgreater{} \tau a\_{i-1}a\_{i+1} for every i{1,,d1},i \in \{1,\ldots,d-1\}, where \tau \textgreater{} 0. Whenever ff can be written under the form f=_i=1k_j=1mf_i,jf = \sum\_{i = 1}^k \prod\_{j = 1}^m f\_{i,j} where the polynomials f_i,jf\_{i,j} have at most tt monomials, it is clear that dktmd \leq k t^m. Assuming that the f_i,jf\_{i,j} have only non-negative coefficients, we improve this degree bound to d=O(km2/3t2m/3log2/3(kt))d = \mathcal O(k m^{2/3} t^{2m/3} {\rm log^{2/3}}(kt)) if \tau \textgreater{} 1, and to dkmtd \leq kmt if τ=d2d\tau = d^{2d}. This investigation has a complexity-theoretic motivation: we show that a suitable strengthening of the above results would imply a separation of the algebraic complexity classes VP and VNP. As they currently stand, these results are strong enough to provide a new example of a family of polynomials in VNP which cannot be computed by monotone arithmetic circuits of polynomial size

    Algebraic Branching Programs, Border Complexity, and Tangent Spaces

    Get PDF
    Nisan showed in 1991 that the width of a smallest noncommutative single-(source,sink) algebraic branching program (ABP) to compute a noncommutative polynomial is given by the ranks of specific matrices. This means that the set of noncommutative polynomials with ABP width complexity at most kk is Zariski-closed, an important property in geometric complexity theory. It follows that approximations cannot help to reduce the required ABP width. It was mentioned by Forbes that this result would probably break when going from single-(source,sink) ABPs to trace ABPs. We prove that this is correct. Moreover, we study the commutative monotone setting and prove a result similar to Nisan, but concerning the analytic closure. We observe the same behavior here: The set of polynomials with ABP width complexity at most kk is closed for single-(source,sink) ABPs and not closed for trace ABPs. The proofs reveal an intriguing connection between tangent spaces and the vector space of flows on the ABP. We close with additional observations on VQP and the closure of VNP which allows us to establish a separation between the two classes

    Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

    Get PDF

    Monotone Complexity of Spanning Tree Polynomial Re-Visited

    Get PDF

    A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

    Get PDF

    On Annihilators of Explicit Polynomial Maps

    Full text link
    We study the algebraic complexity of annihilators of polynomials maps. In particular, when a polynomial map is `encoded by' a small algebraic circuit, we show that the coefficients of an annihilator of the map can be computed in PSPACE. Even when the underlying field is that of reals or complex numbers, an analogous statement is true. We achieve this by using the class VPSPACE that coincides with computability of coefficients in PSPACE, over integers. As a consequence, we derive the following two conditional results. First, we show that a VP-explicit hitting set generator for all of VP would separate either VP from VNP, or non-uniform P from PSPACE. Second, in relation to algebraic natural proofs, we show that proving an algebraic natural proofs barrier would imply either VP \neq VNP or DSPACE(loglognn\log^{\log^{\ast}n} n) ⊄\not\subset P

    Variety Membership Testing in Algebraic Complexity Theory

    Get PDF
    In this thesis, we study some of the central problems in algebraic complexity theory through the lens of the variety membership testing problem. In the first part, we investigate whether separations between algebraic complexity classes can be phrased as instances of the variety membership testing problem. For this, we compare some complexity classes with their closures. We show that monotone commutative single-(source, sink) ABPs are closed. Further, we prove that multi-(source, sink) ABPs are not closed in both the monotone commutative and the noncommutative settings. However, the corresponding complexity classes are closed in all these settings. Next, we observe a separation between the complexity class VQP and the closure of VNP. In the second part, we cover the blackbox polynomial identity testing (PIT) problem, and the rank computation problem of symbolic matrices, both phrasable as instances of the variety membership testing problem. For the blackbox PIT, we give a randomized polynomial time algorithm that uses the number of random bits that matches the information-theoretic lower bound, differing from it only in the lower order terms. For the rank computation problem, we give a deterministic polynomial time approximation scheme (PTAS) when the degrees of the entries of the matrices are bounded by a constant. Finally, we show NP-hardness of two problems on 3-tensors, both of which are instances of the variety membership testing problem. The first problem is the orbit closure containment problem for the action of GLk x GLm x GLn on 3-tensors, while the second problem is to decide whether the slice rank of a given 3-tensor is at most r
    corecore