5,080 research outputs found

    Bayesian Bounds on Parameter Estimation Accuracy for Compact Coalescing Binary Gravitational Wave Signals

    Get PDF
    A global network of laser interferometric gravitational wave detectors is projected to be in operation by around the turn of the century. Here, the noisy output of a single instrument is examined. A gravitational wave is assumed to have been detected in the data and we deal with the subsequent problem of parameter estimation. Specifically, we investigate theoretical lower bounds on the minimum mean-square errors associated with measuring the parameters of the inspiral waveform generated by an orbiting system of neutron stars/black holes. Three theoretical lower bounds on parameter estimation accuracy are considered: the Cramer-Rao bound (CRB); the Weiss-Weinstein bound (WWB); and the Ziv-Zakai bound (ZZB). We obtain the WWB and ZZB for the Newtonian-form of the coalescing binary waveform, and compare them with published CRB and numerical Monte-Carlo results. At large SNR, we find that the theoretical bounds are all identical and are attained by the Monte-Carlo results. As SNR gradually drops below 10, the WWB and ZZB are both found to provide increasingly tighter lower bounds than the CRB. However, at these levels of moderate SNR, there is a significant departure between all the bounds and the numerical Monte-Carlo results.Comment: 17 pages (LaTeX), 4 figures. Submitted to Physical Review

    Model Order Selection Rules For Covariance Structure Classification

    Full text link
    The adaptive classification of the interference covariance matrix structure for radar signal processing applications is addressed in this paper. This represents a key issue because many detection architectures are synthesized assuming a specific covariance structure which may not necessarily coincide with the actual one due to the joint action of the system and environment uncertainties. The considered classification problem is cast in terms of a multiple hypotheses test with some nested alternatives and the theory of Model Order Selection (MOS) is exploited to devise suitable decision rules. Several MOS techniques, such as the Akaike, Takeuchi, and Bayesian information criteria are adopted and the corresponding merits and drawbacks are discussed. At the analysis stage, illustrating examples for the probability of correct model selection are presented showing the effectiveness of the proposed rules

    Target Detection in Heterogeneous Clutter with Low Resolution Radar

    Get PDF
    This thesis develops a framework for SAR target detection and super-resolution in low-resolution environments. The primary focus in this research is the background clutter heterogeneity that often accompanies low range and cross-range resolutions. A corrective model which accounts for clutter replacement is developed to define the detection and false alarm rates of the detector more accurately than a traditional model in which the radar return from the target supplements the existing clutter. In a heterogeneous clutter cell, the clutter replacement model leverages the different scattering distributions among the individual clutter types to generate a probability distribution function for the areas of each clutter type which are obstructed by a target. The location of the target can be extrapolated from the clutter replacement areas, and a multiple hypothesis detection test is conducted to determine which location estimate yields the lowest average error

    Estimation and Detection

    Get PDF

    Statistical Learning Theory for Location Fingerprinting in Wireless LANs

    Get PDF
    In this paper, techniques and algorithms developed in the framework of statistical learning theory are analyzed and applied to the problem of determining the location of a wireless device by measuring the signal strengths from a set of access points (location fingerprinting). Statistical Learning Theory provides a rich theoretical basis for the development of models starting from a set of examples. Signal strength measurement is part of the normal operating mode of wireless equipment, in particular Wi-Fi, so that no custom hardware is required. The proposed techniques, based on the Support Vector Machine paradigm, have been implemented and compared, on the same data set, with other approaches considered in the literature. Tests performed in a real-world environment show that results are comparable, with the advantage of a low algorithmic complexity in the normal operating phase. Moreover, the algorithm is particularly suitable for classification, where it outperforms the other techniques

    Dynamic Underwater Glider Network for Environmental Field Estimation

    Get PDF
    A coordinated dynamic sensor network of autonomous underwater gliders to estimate three-dimensional time-varying environmental fields is proposed and tested. Integration with a network of surface relay nodes and asynchronous consensus are used to distribute local information and achieve the global field estimate. Field spatial sparsity is considered, and field samples are acquired by compressive sensing devices. Tests on simulated and real data demonstrate the feasibility of the approach with relative error performance within 10
    • …
    corecore