8,849 research outputs found

    Separable and Low-Rank Continuous Games

    Full text link
    In this paper, we study nonzero-sum separable games, which are continuous games whose payoffs take a sum-of-products form. Included in this subclass are all finite games and polynomial games. We investigate the structure of equilibria in separable games. We show that these games admit finitely supported Nash equilibria. Motivated by the bounds on the supports of mixed equilibria in two-player finite games in terms of the ranks of the payoff matrices, we define the notion of the rank of an n-player continuous game and use this to provide bounds on the cardinality of the support of equilibrium strategies. We present a general characterization theorem that states that a continuous game has finite rank if and only if it is separable. Using our rank results, we present an efficient algorithm for computing approximate equilibria of two-player separable games with fixed strategy spaces in time polynomial in the rank of the game

    Structure of Extreme Correlated Equilibria: a Zero-Sum Example and its Implications

    Get PDF
    We exhibit the rich structure of the set of correlated equilibria by analyzing the simplest of polynomial games: the mixed extension of matching pennies. We show that while the correlated equilibrium set is convex and compact, the structure of its extreme points can be quite complicated. In finite games the ratio of extreme correlated to extreme Nash equilibria can be greater than exponential in the size of the strategy spaces. In polynomial games there can exist extreme correlated equilibria which are not finitely supported; we construct a large family of examples using techniques from ergodic theory. We show that in general the set of correlated equilibrium distributions of a polynomial game cannot be described by conditions on finitely many moments (means, covariances, etc.), in marked contrast to the set of Nash equilibria which is always expressible in terms of finitely many moments

    Limitations of semidefinite programs for separable states and entangled games

    Get PDF
    Semidefinite programs (SDPs) are a framework for exact or approximate optimization that have widespread application in quantum information theory. We introduce a new method for using reductions to construct integrality gaps for SDPs. These are based on new limitations on the sum-of-squares (SoS) hierarchy in approximating two particularly important sets in quantum information theory, where previously no ω(1)\omega(1)-round integrality gaps were known: the set of separable (i.e. unentangled) states, or equivalently, the 2→42 \rightarrow 4 norm of a matrix, and the set of quantum correlations; i.e. conditional probability distributions achievable with local measurements on a shared entangled state. In both cases no-go theorems were previously known based on computational assumptions such as the Exponential Time Hypothesis (ETH) which asserts that 3-SAT requires exponential time to solve. Our unconditional results achieve the same parameters as all of these previous results (for separable states) or as some of the previous results (for quantum correlations). In some cases we can make use of the framework of Lee-Raghavendra-Steurer (LRS) to establish integrality gaps for any SDP, not only the SoS hierarchy. Our hardness result on separable states also yields a dimension lower bound of approximate disentanglers, answering a question of Watrous and Aaronson et al. These results can be viewed as limitations on the monogamy principle, the PPT test, the ability of Tsirelson-type bounds to restrict quantum correlations, as well as the SDP hierarchies of Doherty-Parrilo-Spedalieri, Navascues-Pironio-Acin and Berta-Fawzi-Scholz.Comment: 47 pages. v2. small changes, fixes and clarifications. published versio

    Concern for relative position, rank-order contests, and contributions to public goods

    Get PDF
    We study the consequences of concern for relative position and status in a public good economy. We consider a group of agents who are engaged in a contest for position whereby a set of rewards are distributed according to relative status. The extent of concern for rewards, together with the relative magnitude of rewards, will have an impact on agents’ willingness to contribute to public goods. Depending on the nature of prizes, i.e. whether higher private good consumption is rewarded or punished, the contest for relative position will either exacerbate or ameliorate the free-riding problem inherent in public good environments. In addition to examining the implications of concern for relative position, we also consider how an appropriate scheme of rewards might be designed to induce more efficient levels of public good.relative position; status seeking; public goods; contests

    Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis

    Get PDF
    We show how the discovery of robust scalable numerical solvers for arbitrary bounded linear operators can be automated as a Game Theory problem by reformulating the process of computing with partial information and limited resources as that of playing underlying hierarchies of adversarial information games. When the solution space is a Banach space BB endowed with a quadratic norm ∄⋅∄\|\cdot\|, the optimal measure (mixed strategy) for such games (e.g. the adversarial recovery of u∈Bu\in B, given partial measurements [ϕi,u][\phi_i, u] with ϕi∈B∗\phi_i\in B^*, using relative error in ∄⋅∄\|\cdot\|-norm as a loss) is a centered Gaussian field Ο\xi solely determined by the norm ∄⋅∄\|\cdot\|, whose conditioning (on measurements) produces optimal bets. When measurements are hierarchical, the process of conditioning this Gaussian field produces a hierarchy of elementary bets (gamblets). These gamblets generalize the notion of Wavelets and Wannier functions in the sense that they are adapted to the norm ∄⋅∄\|\cdot\| and induce a multi-resolution decomposition of BB that is adapted to the eigensubspaces of the operator defining the norm ∄⋅∄\|\cdot\|. When the operator is localized, we show that the resulting gamblets are localized both in space and frequency and introduce the Fast Gamblet Transform (FGT) with rigorous accuracy and (near-linear) complexity estimates. As the FFT can be used to solve and diagonalize arbitrary PDEs with constant coefficients, the FGT can be used to decompose a wide range of continuous linear operators (including arbitrary continuous linear bijections from H0sH^s_0 to H−sH^{-s} or to L2L^2) into a sequence of independent linear systems with uniformly bounded condition numbers and leads to O(Npolylog⁥N)\mathcal{O}(N \operatorname{polylog} N) solvers and eigenspace adapted Multiresolution Analysis (resulting in near linear complexity approximation of all eigensubspaces).Comment: 142 pages. 14 Figures. Presented at AFOSR (Aug 2016), DARPA (Sep 2016), IPAM (Apr 3, 2017), Hausdorff (April 13, 2017) and ICERM (June 5, 2017
    • 

    corecore