111 research outputs found

    Separable Reversible Data Hiding in Encrypted Images Based on Two-Dimensional Histogram Modification

    Get PDF
    An efficient method of completely separable reversible data hiding in encrypted images is proposed. The cover image is first partitioned into nonoverlapping blocks and specific encryption is applied to obtain the encrypted image. Then, image difference in the encrypted domain can be calculated based on the homomorphic property of the cryptosystem. The data hider, who does not know the original image content, may reversibly embed secret data into image difference based on two-dimensional difference histogram modification. Data extraction is completely separable from image decryption; that is, data extraction can be done either in the encrypted domain or in the decrypted domain, so that it can be applied to different application scenarios. In addition, data extraction and image recovery are free of any error. Experimental results demonstrate the feasibility and efficiency of the proposed scheme

    Reversible Data Hiding in Encrypted Images Using MSBs Integration and Histogram Modification

    Full text link
    This paper presents a reversible data hiding in encrypted image that employs based notions of the RDH in plain-image schemes including histogram modification and prediction-error computation. In the proposed method, original image may be encrypted by desire encryption algorithm. Most significant bit (MSB) of encrypted pixels are integrated to vacate room for embedding data bits. Integrated ones will be more resistant against failure of reconstruction if they are modified for embedding data bits. At the recipient, we employ chess-board predictor for lossless reconstruction of the original image by the aim of prediction-error analysis. Comparing to existent RDHEI algorithms, not only we propose a separable method to extract data bits, but also content-owner may attain a perfect reconstruction of the original image without having data hider key. Experimental results confirm that the proposed algorithm outperforms state of the art ones

    A Survey on Reversible Image Data Hiding Using the Hierarchical Block Embedding Technique

    Get PDF
    The use of graphics for data concealment has significantly advanced the fields of secure communication and identity verification. Reversible data hiding (RDH) involves hiding data within host media, such as images, while allowing for the recovery of the original cover. Various RDH approaches have been developed, including difference expansion, interpolation techniques, prediction, and histogram modification. However, these methods were primarily applied to plain photos. This study introduces a novel reversible image transformation technique called Block Hierarchical Substitution (BHS). BHS enhances the quality of encrypted images and enables lossless restoration of the secret image with a low Peak Signal-to-Noise Ratio (PSNR). The cover image is divided into non-overlapping blocks, and the pixel values within each block are encrypted using the modulo function. This ensures that the linear prediction difference in the block remains consistent before and after encryption, enabling independent data extraction without picture decryption. In order to address the challenges associated with secure multimedia data processing, such as data encryption during transmission and storage, this survey investigates the specific issues related to reversible data hiding in encrypted images (RDHEI). Our proposed solution aims to enhance security (low Mean Squared Error) and improve the PSNR value by applying the method to encrypted images

    A Brief Review of RIDH

    Get PDF
    The Reversible image data hiding (RIDH) is one of the novel approaches in the security field. In the highly sensitive domains like Medical, Military, Research labs, it is important to recover the cover image successfully, Hence, without applying the normal steganography, we can use RIDH to get the better result. Reversible data hiding has a advantage over image data hiding that it can give you double security surely

    An Efficient MSB Prediction-Based Method for High-Capacity Reversible Data Hiding in Encrypted Images

    Get PDF
    International audienceReversible data hiding in encrypted images (RDHEI) is an effective technique to embed data in the encrypted domain. An original image is encrypted with a secret key and during or after its transmission, it is possible to embed additional information in the encrypted image, without knowing the encryp-tion key or the original content of the image. During the decoding process, the secret message can be extracted and the original image can be reconstructed. In the last few years, RDHEI has started to draw research interest. Indeed, with the development of cloud computing, data privacy has become a real issue. However, none of the existing methods allow us to hide a large amount of information in a reversible manner. In this paper, we propose a new reversible method based on MSB (most significant bit) prediction with a very high capacity. We present two approaches, these are: high capacity reversible data hiding approach with correction of prediction errors and high capacity reversible data hiding approach with embedded prediction errors. With this method, regardless of the approach used, our results are better than those obtained with current state of the art methods, both in terms of reconstructed image quality and embedding capacity
    corecore