331 research outputs found

    Separability of Reachability Sets of Vector Addition Systems

    Get PDF
    Given two families of sets F and G, the F-separability problem for G asks whether for two given sets U, V in G there exists a set S in F, such that U is included in S and V is disjoint with S. We consider two families of sets F: modular sets S which are subsets of N^d, defined as unions of equivalence classes modulo some natural number n in N, and unary sets, which extend modular sets by requiring equality below a threshold n, and equivalence modulo n above n. Our main result is decidability of modular- and unary-separability for the class G of reachability sets of Vector Addition Systems, Petri Nets, Vector Addition Systems with States, and for sections thereof

    A Characterization for Decidable Separability by Piecewise Testable Languages

    Full text link
    The separability problem for word languages of a class C\mathcal{C} by languages of a class S\mathcal{S} asks, for two given languages II and EE from C\mathcal{C}, whether there exists a language SS from S\mathcal{S} that includes II and excludes EE, that is, ISI \subseteq S and SE=S\cap E = \emptyset. In this work, we assume some mild closure properties for C\mathcal{C} and study for which such classes separability by a piecewise testable language (PTL) is decidable. We characterize these classes in terms of decidability of (two variants of) an unboundedness problem. From this, we deduce that separability by PTL is decidable for a number of language classes, such as the context-free languages and languages of labeled vector addition systems. Furthermore, it follows that separability by PTL is decidable if and only if one can compute for any language of the class its downward closure wrt. the scattered substring ordering (i.e., if the set of scattered substrings of any language of the class is effectively regular). The obtained decidability results contrast some undecidability results. In fact, for all (non-regular) language classes that we present as examples with decidable separability, it is undecidable whether a given language is a PTL itself. Our characterization involves a result of independent interest, which states that for any kind of languages II and EE, non-separability by PTL is equivalent to the existence of common patterns in II and EE

    The separation problem for regular languages by piecewise testable languages

    Full text link
    Separation is a classical problem in mathematics and computer science. It asks whether, given two sets belonging to some class, it is possible to separate them by another set of a smaller class. We present and discuss the separation problem for regular languages. We then give a direct polynomial time algorithm to check whether two given regular languages are separable by a piecewise testable language, that is, whether a BΣ1(<)B{\Sigma}1(<) sentence can witness that the languages are indeed disjoint. The proof is a reformulation and a refinement of an algebraic argument already given by Almeida and the second author

    Regular Separability of Parikh Automata

    Get PDF
    We investigate a subclass of languages recognized by vector addition systems, namely languages of nondeterministic Parikh automata. While the regularity problem (is the language of a given automaton regular?) is undecidable for this model, we surprisingly show decidability of the regular separability problem: given two Parikh automata, is there a regular language that contains one of them and is disjoint from the other? We supplement this result by proving undecidability of the same problem already for languages of visibly one counter automata

    Analysis of Petri Nets and Transition Systems

    Full text link
    This paper describes a stand-alone, no-frills tool supporting the analysis of (labelled) place/transition Petri nets and the synthesis of labelled transition systems into Petri nets. It is implemented as a collection of independent, dedicated algorithms which have been designed to operate modularly, portably, extensibly, and efficiently.Comment: In Proceedings ICE 2015, arXiv:1508.0459

    Unboundedness Problems for Languages of Vector Addition Systems

    Get PDF
    A vector addition system (VAS) with an initial and a final marking and transition labels induces a language. In part because the reachability problem in VAS remains far from being well-understood, it is difficult to devise decision procedures for such languages. This is especially true for checking properties that state the existence of infinitely many words of a particular shape. Informally, we call these unboundedness properties. We present a simple set of axioms for predicates that can express unboundedness properties. Our main result is that such a predicate is decidable for VAS languages as soon as it is decidable for regular languages. Among other results, this allows us to show decidability of (i) separability by bounded regular languages, (ii) unboundedness of occurring factors from a language K with mild conditions on K, and (iii) universality of the set of factors

    An Approach to Regular Separability in Vector Addition Systems

    Full text link
    We study the problem of regular separability of languages of vector addition systems with states (VASS). It asks whether for two given VASS languages K and L, there exists a regular language R that includes K and is disjoint from L. While decidability of the problem in full generality remains an open question, there are several subclasses for which decidability has been shown: It is decidable for (i) one-dimensional VASS, (ii) VASS coverability languages, (iii) languages of integer VASS, and (iv) commutative VASS languages. We propose a general approach to deciding regular separability. We use it to decide regular separability of an arbitrary VASS language from any language in the classes (i), (ii), and (iii). This generalizes all previous results, including (iv)

    Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable

    Get PDF
    We consider the problems of language inclusion and language equivalence for Vector Addition Systems with States (VASSes) with the acceptance condition defined by the set of accepting states (and more generally by some upward-closed conditions). In general the problem of language equivalence is undecidable even for one-dimensional VASSes, thus to get decidability we investigate restricted subclasses. On one hand we show that the problem of language inclusion of a VASS in k-ambiguous VASS (for any natural k) is decidable and even in Ackermann. On the other hand we prove that the language equivalence problem is Ackermann-hard already for deterministic VASSes. These two results imply Ackermann-completeness for language inclusion and equivalence in several possible restrictions. Some of our techniques can be also applied in much broader generality in infinite-state systems, namely for some subclass of well-structured transition systems

    Regular Separability of Well-Structured Transition Systems

    Get PDF
    We investigate the languages recognized by well-structured transition systems (WSTS) with upward and downward compatibility. Our first result shows that, under very mild assumptions, every two disjoint WSTS languages are regular separable: There is a regular language containing one of them and being disjoint from the other. As a consequence, if a language as well as its complement are both recognized by WSTS, then they are necessarily regular. In particular, no subclass of WSTS languages beyond the regular languages is closed under complement. Our second result shows that for Petri nets, the complexity of the backwards coverability algorithm yields a bound on the size of the regular separator. We complement it by a lower bound construction

    Deciding Piecewise Testable Separability for Regular Tree Languages

    Get PDF
    The piecewise testable separability problem asks, given two input languages, whether there exists a piecewise testable language that contains the first input language and is disjoint from the second. We prove a general characterisation of piecewise testable separability on languages in a well-quasiorder, in terms of ideals of the ordering. This subsumes the known characterisations in the case of finite words. In the case of finite ranked trees ordered by homeomorphic embedding, we show using effective representations for tree ideals that it entails the decidability of piecewise testable separability when the input languages are regular. A final byproduct is a new proof of the decidability of whether an input regular language of ranked trees is piecewise testable, which was first shown in the unranked case by Bojanczyk, Segoufin, and Straubing [Log. Meth. in Comput. Sci., 8(3:26), 2012]
    corecore