227 research outputs found

    Using Sentinel-2 MSI for mapping iron oxide minerals on a continental and global scale

    Get PDF
    Iron is the fourth most common mineral found in the earth crust. Although it may not be as important for soil fertility as, e.g., phosphorus, nitrogen and organic matter, its absence would be detrimental to plant growth. At the same time, iron oxides are highly correlated with phosphorus availability. Iron is thus an indicator for soil fertility and the usability of an area for cultivation of crop. A relatively high spectral resolution is needed for mapping iron oxide contents with spectral reflectance data, and remote sensing is the only suitable tool for surveying large areas at a high temporal and spatial interval. Sentinel-2 MSI (MultiSpectral Instrument) is the Landsat-like spatial resolution (10–60 m) super-spectral instrument of the European Space Agency (ESA), aimed at additional data continuity for global land surface monitoring with Landsat and Satellite Pour l’Observation de la Terre (SPOT) missions. Several studies with simulated and real data have been conducted in the last several years to show the potential of Sentinel-2 MSI, including its use for geological remote sensing, mineral mapping in particular. Sentinel-2 has several bands that cover the 0.9 μm iron absorption feature, while space-borne sensors traditionally used for geologic remote sensing, like ASTER and Landsat, had only one band in this feature. In this paper, we show a comparison of Sentinel-2 and AVIRIS to demonstrate the usability of the VNIR bands for mapping the near-infrared iron absorption feature. Next, we present spectral indices for mapping iron minerals that are important in soil fertility and mineral exploration

    Remote Sensing of Environment: Current status of Landsat program, science, and applications

    Get PDF
    Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat- 1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality. Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and followup with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loop—justifying and encouraging current and future programmatic support for Landsat

    Observations and Recommendations for the Calibration of Landsat 8 OLI and Sentinel 2 MSI for Improved Data Interoperability

    Get PDF
    Combining data from multiple sensors into a single seamless time series, also known as data interoperability, has the potential for unlocking new understanding of how the Earth functions as a system. However, our ability to produce these advanced data sets is hampered by the differences in design and function of the various optical remote-sensing satellite systems. A key factor is the impact that calibration of these instruments has on data interoperability. To address this issue, a workshop with a panel of experts was convened in conjunction with the Pecora 20 conference to focus on data interoperability between Landsat and the Sentinel 2 sensors. Four major areas of recommendation were the outcome of the workshop. The first was to improve communications between satellite agencies and the remote-sensing community. The second was to adopt a collections-based approach to processing the data. As expected, a third recommendation was to improve calibration methodologies in several specific areas. Lastly, and the most ambitious of the four, was to develop a comprehensive process for validating surface reflectance products produced from the data sets. Collectively, these recommendations have significant potential for improving satellite sensor calibration in a focused manner that can directly catalyze efforts to develop data that are closer to being seamlessly interoperable

    Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity

    Get PDF
    5 p.Nowadays Earth observation satellites, in particular Landsat, provide a valuable help to forest managers in post-fire operations; being the base of post-fire damage maps that enable to analyze fire impacts and to develop vegetation recovery plans. Sentinel-2A MultiSpectral Instrument (MSI) records data in similar spectral wavelengths that Landsat 8 Operational Land Imager (OLI), and has higher spatial and temporal resolutions. This work compares two types of satellite-based maps for evaluating fire damage in a large wildfire (around 8000 ha) located in Sierra de Gata (central-western Spain) on 6–11 August 2015. 1) burn severity maps based exclusively on Landsat data; specifically, on differenced Normalized Burn Ratio (dNBR) and on its relative versions (Relative dNBR, RdNBR, and Relativized Burn Ratio, RBR) and 2) burn severity maps based on the same indexes but combining pre-fire data from Landsat 8 OLI with post-fire data from Sentinel-2A MSI data. Combination of both Landsat and Sentinel-2 data might reduce the time elapsed since forest fire to the availability of an initial fire damage map. Interpretation of ortho-photograph Pléiades 1 B data (1:10,000) provided us the ground reference data to measure the accuracy of both burn severity maps. Results showed that Landsat based burn severity maps presented an adequate assessment of the damage grade (κ statistic = 0.80) and its spatial distribution in wildfire emergency response. Further using both Landsat and Sentinel-2 MSI data the accuracy of burn severity maps, though slightly lower (κ statistic = 0.70) showed an adequate level for be used by forest managersS

    Detecting Lithium (Li) Mineralizations from Space: Current Research and Future Perspectives

    Get PDF
    Optical and thermal remote sensing data have been an important tool in geological exploration for certain deposit types. However, the present economic and technological advances demand the adaptation of the remote sensing data and image processing techniques to the exploration of other raw materials like lithium (Li). A bibliometric analysis, using a systematic review approach, was made to understand the recent interest in the application of remote sensing methods in Li exploration. A review of the application studies and developments in this field was also made. Throughout the paper, the addressed topics include: (i) achievements made in Li exploration using remote sensing methods; (ii) the main weaknesses of the approaches; (iii) how to overcome these difficulties; and (iv) the expected research perspectives. We expect that the number of studies concerning this topic will increase in the near future and that remote sensing will become an integrated and fundamental tool in Li exploration

    Extended Pseudo Invariant Calibration Site-Based Trend-To-Trend Cross-Calibration of Optical Satellite Sensors

    Get PDF
    Satellite sensors have been extremely useful and are in massive demand in the understanding of the Earth’s surface and monitoring of changes. For quantitative analysis and acquiring consistent measurements, absolute radiometric calibration is necessary. The most common vicarious approach of radiometric calibration is cross-calibration, which helps to tie all the sensors to a common radiometric scale for consistent measurement. One of the traditional methods of cross-calibration is performed using temporally and spectrally stable pseudo-invariant calibration sites (PICS). This technique is limited by adequate cloud-free acquisitions for cross-calibration which would require a longer time to study the differences in sensor measurements. To address the limitation of traditional PICS-based approaches and to increase the cross-calibration opportunity for quickly achieving highquality results, the approach is based on using extended pseudo invariant calibration sites (EPICS) over North Africa. With the EPICS-based approach, the area of extent of the cross-calibration site covers a large portion of the North African continent. With targets this large, any sensor should overpass some portion of PICS near-daily, allowing for evaluation of sensor-to-sensor performance with much greater frequency. By using these near-daily measurements, trends of the sensor’s performance are then used to evaluate sensor-to-sensor daily cross-calibration. With the use of the proposed methodology, the dataset for cross-calibration is increased by an order of magnitude compared to traditional approaches, resulting in the differences between any two sensors being detected within a much shorter time. Using this new trend in trend cross-calibration approaches, gains were evaluated for Landsat 7/8 and Sentinel 2A/B, with the results showing that the sensors are calibrated within 2.5% (within less than 8% uncertainty) or better for all sensor pairs, which is consistent with what the traditional PICS-based approach detects. The proposed crosscalibration technique is useful to cross-calibrate any two sensors without the requirement of any coincident or near-coincident scene pairs, while still achieving results similar to traditional approaches in a short time

    Evaluating Landsat-8 and Sentinel-2 Data Consistency for High Spatiotemporal Inland and Coastal Water Quality Monitoring

    Get PDF
    The synergy of fine-to-moderate-resolutin (i.e., 10–60 m) satellite data of the Landsat-8 Operational Land Imager (OLI) and the Sentinel-2 Multispectral Instrument (MSI) provides a possibility to monitor the dynamics of sensitive aquatic systems. However, it is imperative to assess the spectral consistency of both sensors before developing new algorithms for their combined use. This study evaluates spectral consistency between OLI and MSI-A/B, mainly in terms of the topof-atmosphere reflectance (ρt), Rayleigh-corrected reflectance (ρrc), and remote-sensing reflectance (Rrs). To check the spectral consistency under various atmospheric and aquatic conditions, nearsimultaneous same-day overpass images of OLI and MSI-A/B were selected over diverse coastal and inland areas across Mainland China and Hong Kong. The results showed that spectral data obtained from OLI and MSI-A/B were consistent. The difference in the mean absolute percentage error (MAPE) of the OLI and MSI-A products was ~8% in ρt and ~10% in both ρrc and Rrs for all the matching bands, whereas the MAPE for OLI and MSI-B was ~3.7% in ρt , ~5.7% in ρrc, and ~7.5% in Rrs for all visible bands except the ultra-blue band. Overall, the green band was the most consistent, with the lowest MAPE of ≤ 4.6% in all the products. The linear regression model suggested that product difference decreased significantly after band adjustment with the highest reduction rate in Rrs (NIR band) and Rrs (red band) for the OLI–MSI-A and OLI–MSI-B comparison, respectively. Further, this study discussed the combined use of OLI and MSI-A/B data for (i) time series of the total suspended solid concentrations (TSS) over coastal and inland waters; (ii) floating algae area comparison; and (iii) tracking changes in coastal floating algae (FA). Time series analysis of the TSS showed that seasonal variation was well-captured by the combined use of sensors. The analysis of the floating algae bloom area revealed that the algae area was consistent, however, the difference increases as the time difference between the same-day overpasses increases. Furthermore, tracking changes in coastal FA over two months showed that thin algal slicks (width < 500 m) can be detected with an adequate spatial resolution of the OLI and the MSI

    DETECTING THE SURFACE WATER AREA IN CIRATA DAM UPSTREAM CITARUM USING A WATER INDEX FROM SENTINEL-2

    Get PDF
    This paper describes the detection of the surface water area in Cirata dam,  upstream Citarum, using a water index derived from Sentinel-2. MSI Level 1C (MSIL1C) data from 16 November 2018 were extracted into a water index such as the NDWI (Normalized Difference Water Index) model of Gao (1996), McFeeters (1996), Roger and Kearney (2004), and Xu (2006). Water index were analyzed based on the presence of several objects (water, vegetation, soil, and built-up). The research resulted in the ability of each water index to separate water and non-water objects. The results conclude that the NDWI of McFeeters (1996) derived from Sentinel-2 MSI showed the best results in detecting the surface water area of the reservoir

    Mapping winter wheat with combinations of temporally aggregated Sentinel-2 and Landsat-8 data in Shandong Province, China

    Get PDF
    Winter wheat is one of the major cereal crops in China. The spatial distribution of winter wheat planting areas is closely related to food security; however, mapping winter wheat with time-series finer spatial resolution satellite images across large areas is challenging. This paper explores the potential of combining temporally aggregated Landsat-8 OLI and Sentinel-2 MSI data available via the Google Earth Engine (GEE) platform for mapping winter wheat in Shandong Province, China. First, six phenological median composites of Landsat-8 OLI and Sentinel-2 MSI reflectance measures were generated by a temporal aggregation technique according to the winter wheat phenological calendar, which covered seedling, tillering, over-wintering, reviving, jointing-heading and maturing phases, respectively. Then, Random Forest (RF) classifier was used to classify multi-temporal composites but also mono-temporal winter wheat development phases and mono-sensor data. The results showed that winter wheat could be classified with an overall accuracy of 93.4% and F1 measure (the harmonic mean of producer&rsquo;s and user&rsquo;s accuracy) of 0.97 with temporally aggregated Landsat-8 and Sentinel-2 data were combined. As our results also revealed, it was always good to classify multi-temporal images compared to mono-temporal imagery (the overall accuracy dropped from 93.4% to as low as 76.4%). It was also good to classify Landsat-8 OLI and Sentinel-2 MSI imagery combined instead of classifying them individually. The analysis showed among the mono-temporal winter wheat development phases that the maturing phase&rsquo;s and reviving phase&rsquo;s data were more important than the data for other mono-temporal winter wheat development phases. In sum, this study confirmed the importance of using temporally aggregated Landsat-8 OLI and Sentinel-2 MSI data combined and identified key winter wheat development phases for accurate winter wheat classification. These results can be useful to benefit on freely available optical satellite data (Landsat-8 OLI and Sentinel-2 MSI) and prioritize key winter wheat development phases for accurate mapping winter wheat planting areas across China and elsewhere

    Band selection in Sentinel-2 satellite for agriculture applications

    Get PDF
    Various indices are used for assessing vegetation and soil properties in satellite remote sensing applications. Some indices, such as NDVI and NDWI, are defined based on the sensitivity and significance of specific bands. Nowadays, remote sensing capability with a good number of bands and high spatial resolution is available. Instead of classification based on indices, this paper explores direct classification using selected bands. Recently launched Sentinel-2A is adopted as a case study. Three methods are compared, where the first approach utilizes traditional indices and the latter two approaches adopt specific bands (Red, NIR, and SWIR) and full bands of on-board sensors, respectively. It is shown that a better classification performance can be achieved by directly using the three selected bands compared with the one using indices, while the use of all 13 bands can further improve the performance. Therefore, it is recommended the new approach can be applied for Sentinel-2A image analysis and other wide applications
    corecore