18,146 research outputs found

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    An Advanced Conceptual Diagnostic Healthcare Framework for Diabetes and Cardiovascular Disorders

    Full text link
    The data mining along with emerging computing techniques have astonishingly influenced the healthcare industry. Researchers have used different Data Mining and Internet of Things (IoT) for enrooting a programmed solution for diabetes and heart patients. However, still, more advanced and united solution is needed that can offer a therapeutic opinion to individual diabetic and cardio patients. Therefore, here, a smart data mining and IoT (SMDIoT) based advanced healthcare system for proficient diabetes and cardiovascular diseases have been proposed. The hybridization of data mining and IoT with other emerging computing techniques is supposed to give an effective and economical solution to diabetes and cardio patients. SMDIoT hybridized the ideas of data mining, Internet of Things, chatbots, contextual entity search (CES), bio-sensors, semantic analysis and granular computing (GC). The bio-sensors of the proposed system assist in getting the current and precise status of the concerned patients so that in case of an emergency, the needful medical assistance can be provided. The novelty lies in the hybrid framework and the adequate support of chatbots, granular computing, context entity search and semantic analysis. The practical implementation of this system is very challenging and costly. However, it appears to be more operative and economical solution for diabetes and cardio patients.Comment: 11 PAGE

    Patients’ online descriptions of their experiences as a measure of healthcare quality

    Get PDF
    Introduction Patients are describing their healthcare experiences online using rating websites. There has been substantial professional opposition to this, but the government in England has promoted the idea as a mechanism to improve healthcare quality. Little is known about the content and effect of healthcare rating and review sites. This thesis aims to look at comments left online and assess whether they might be a useful measure of healthcare quality. Method I used a variety of different approaches to examine patients’ comments and ratings about care online. I performed an examination of the comments left on the NHS Choices website, and analysed whether there was a relationship between the comments and traditional patient surveys or other measures of clinical quality. I used discrete choice experiments to look at the value patients place on online care reviews when making decisions about which hospital to go to. I used natural language processing techniques to explore the comments left in free text reviews. I analysed the tweets sent to NHS hospitals in England over a year to see if they contained useful information for understanding care quality. Results The analysis of ratings on NHS Choices demonstrates that reviews left online are largely positive. There are associations between online ratings and both traditional survey methods of patient experience and outcome measures. There is evidence of a selection bias in those who both read and contribute ratings online – with younger age groups and those with higher educational attainment more likely to use them. Discrete choice experiments suggest that people will use online ratings in their decisions about where to seek care, and the effect is similar to that of a recommendation by friends and family. I found that sentiment analysis techniques can be used classify free text comments left online into meaningful information that relates to data in the national patient surveys. However, the analysis of comments on Twitter found that only 11% of tweets were related to care quality. Conclusions Patients rating their care online may have a useful role as a measure of care quality. It has some drawbacks, not least the non-random group of people who leave their comments. However, it provides information that is complementary to current approaches to measuring quality and patient experiences, may be used by patients in their decision-making, and provides timely information for quality improvement. I hypothesise that it is possible to measure a ‘cloud of patient experience’ from all of the sources where patients describe their care online, including social media, and use this to make inferences about care quality. I find this idea has potential, but there are many technical and practical limitations that need to be overcome before it is useful.Open Acces

    Designing Human-Centered Collective Intelligence

    Get PDF
    Human-Centered Collective Intelligence (HCCI) is an emergent research area that seeks to bring together major research areas like machine learning, statistical modeling, information retrieval, market research, and software engineering to address challenges pertaining to deriving intelligent insights and solutions through the collaboration of several intelligent sensors, devices and data sources. An archetypal contextual CI scenario might be concerned with deriving affect-driven intelligence through multimodal emotion detection sources in a bid to determine the likability of one movie trailer over another. On the other hand, the key tenets to designing robust and evolutionary software and infrastructure architecture models to address cross-cutting quality concerns is of keen interest in the “Cloud” age of today. Some of the key quality concerns of interest in CI scenarios span the gamut of security and privacy, scalability, performance, fault-tolerance, and reliability. I present recent advances in CI system design with a focus on highlighting optimal solutions for the aforementioned cross-cutting concerns. I also describe a number of design challenges and a framework that I have determined to be critical to designing CI systems. With inspiration from machine learning, computational advertising, ubiquitous computing, and sociable robotics, this literature incorporates theories and concepts from various viewpoints to empower the collective intelligence engine, ZOEI, to discover affective state and emotional intent across multiple mediums. The discerned affective state is used in recommender systems among others to support content personalization. I dive into the design of optimal architectures that allow humans and intelligent systems to work collectively to solve complex problems. I present an evaluation of various studies that leverage the ZOEI framework to design collective intelligence

    Context Mining with Machine Learning Approach: Understanding, Sensing, Categorizing, and Analyzing Context Parameters

    Get PDF
    Context is a vital concept in various fields, such as linguistics, psychology, and computer science. It refers to the background, environment, or situation in which an event, action, or idea occurs or exists. Categorization of context involves grouping contexts into different types or classes based on shared characteristics. Physical context, social context, cultural context, temporal context, and cognitive context are a few categories under which context can be divided. Each type of context plays a significant role in shaping our understanding and interpretation of events or actions. Understanding and categorizing context is essential for many applications, such as natural language processing, human-computer interaction, and communication studies, as it provides valuable information for interpretation, prediction, and decision-making. In this paper, we will provide an overview of the concept of context and its categorization, highlighting the importance of context in various fields and applications. We will discuss each type of context and provide examples of how they are used in different fields. Finally, we will conclude by emphasizing the significance of understanding and categorizing context for interpretation, prediction, and decision-making

    IoT-Enabled Social Relationships Meet Artificial Social Intelligence

    Get PDF
    With the recent advances of the Internet of Things, and the increasing accessibility of ubiquitous computing resources and mobile devices, the prevalence of rich media contents, and the ensuing social, economic, and cultural changes, computing technology and applications have evolved quickly over the past decade. They now go beyond personal computing, facilitating collaboration and social interactions in general, causing a quick proliferation of social relationships among IoT entities. The increasing number of these relationships and their heterogeneous social features have led to computing and communication bottlenecks that prevent the IoT network from taking advantage of these relationships to improve the offered services and customize the delivered content, known as relationship explosion. On the other hand, the quick advances in artificial intelligence applications in social computing have led to the emerging of a promising research field known as Artificial Social Intelligence (ASI) that has the potential to tackle the social relationship explosion problem. This paper discusses the role of IoT in social relationships detection and management, the problem of social relationships explosion in IoT and reviews the proposed solutions using ASI, including social-oriented machine-learning and deep-learning techniques.Comment: Submitted to IEEE internet of things journa

    Knowledge will Propel Machine Understanding of Content: Extrapolating from Current Examples

    Full text link
    Machine Learning has been a big success story during the AI resurgence. One particular stand out success relates to learning from a massive amount of data. In spite of early assertions of the unreasonable effectiveness of data, there is increasing recognition for utilizing knowledge whenever it is available or can be created purposefully. In this paper, we discuss the indispensable role of knowledge for deeper understanding of content where (i) large amounts of training data are unavailable, (ii) the objects to be recognized are complex, (e.g., implicit entities and highly subjective content), and (iii) applications need to use complementary or related data in multiple modalities/media. What brings us to the cusp of rapid progress is our ability to (a) create relevant and reliable knowledge and (b) carefully exploit knowledge to enhance ML/NLP techniques. Using diverse examples, we seek to foretell unprecedented progress in our ability for deeper understanding and exploitation of multimodal data and continued incorporation of knowledge in learning techniques.Comment: Pre-print of the paper accepted at 2017 IEEE/WIC/ACM International Conference on Web Intelligence (WI). arXiv admin note: substantial text overlap with arXiv:1610.0770
    corecore