1,138 research outputs found

    Multimodal Relational Tensor Network for Sentiment and Emotion Classification

    Full text link
    Understanding Affect from video segments has brought researchers from the language, audio and video domains together. Most of the current multimodal research in this area deals with various techniques to fuse the modalities, and mostly treat the segments of a video independently. Motivated by the work of (Zadeh et al., 2017) and (Poria et al., 2017), we present our architecture, Relational Tensor Network, where we use the inter-modal interactions within a segment (intra-segment) and also consider the sequence of segments in a video to model the inter-segment inter-modal interactions. We also generate rich representations of text and audio modalities by leveraging richer audio and linguistic context alongwith fusing fine-grained knowledge based polarity scores from text. We present the results of our model on CMU-MOSEI dataset and show that our model outperforms many baselines and state of the art methods for sentiment classification and emotion recognition

    Challenges in Emotion Style Transfer: An Exploration with a Lexical Substitution Pipeline

    Full text link
    We propose the task of emotion style transfer, which is particularly challenging, as emotions (here: anger, disgust, fear, joy, sadness, surprise) are on the fence between content and style. To understand the particular difficulties of this task, we design a transparent emotion style transfer pipeline based on three steps: (1) select the words that are promising to be substituted to change the emotion (with a brute-force approach and selection based on the attention mechanism of an emotion classifier), (2) find sets of words as candidates for substituting the words (based on lexical and distributional semantics), and (3) select the most promising combination of substitutions with an objective function which consists of components for content (based on BERT sentence embeddings), emotion (based on an emotion classifier), and fluency (based on a neural language model). This comparably straight-forward setup enables us to explore the task and understand in what cases lexical substitution can vary the emotional load of texts, how changes in content and style interact and if they are at odds. We further evaluate our pipeline quantitatively in an automated and an annotation study based on Tweets and find, indeed, that simultaneous adjustments of content and emotion are conflicting objectives: as we show in a qualitative analysis motivated by Scherer's emotion component model, this is particularly the case for implicit emotion expressions based on cognitive appraisal or descriptions of bodily reactions.Comment: Accepted at the SocialNLP Workshop at ACL 202

    A First Look at Emoji Usage on GitHub: An Empirical Study

    Full text link
    Emoji is becoming a ubiquitous language and gaining worldwide popularity in recent years including the field of software engineering (SE). As nonverbal cues, emojis are widely used in user understanding tasks such as sentiment analysis, but few work has been done to study emojis in SE scenarios. This paper presents a large scale empirical study on how GitHub users use emojis in development-related communications. We find that emojis are used by a considerable proportion of GitHub users. In comparison to Internet users, developers show interesting usage characteristics and have their own interpretation of the meanings of emojis. In addition, the usage of emojis reflects a positive and supportive culture of this community. Through a manual annotation task, we find that sentimental usage is a main intention of using emojis in issues, pull requests, and comments, while emojis are mainly used to emphasize important contents in README. These findings not only deepen our understanding about the culture of SE communities, but also provide implications on how to facilitate SE tasks with emojis such as sentiment analysis

    Improving the Accuracy of Pre-trained Word Embeddings for Sentiment Analysis

    Full text link
    Sentiment analysis is one of the well-known tasks and fast growing research areas in natural language processing (NLP) and text classifications. This technique has become an essential part of a wide range of applications including politics, business, advertising and marketing. There are various techniques for sentiment analysis, but recently word embeddings methods have been widely used in sentiment classification tasks. Word2Vec and GloVe are currently among the most accurate and usable word embedding methods which can convert words into meaningful vectors. However, these methods ignore sentiment information of texts and need a huge corpus of texts for training and generating exact vectors which are used as inputs of deep learning models. As a result, because of the small size of some corpuses, researcher often have to use pre-trained word embeddings which were trained on other large text corpus such as Google News with about 100 billion words. The increasing accuracy of pre-trained word embeddings has a great impact on sentiment analysis research. In this paper we propose a novel method, Improved Word Vectors (IWV), which increases the accuracy of pre-trained word embeddings in sentiment analysis. Our method is based on Part-of-Speech (POS) tagging techniques, lexicon-based approaches and Word2Vec/GloVe methods. We tested the accuracy of our method via different deep learning models and sentiment datasets. Our experiment results show that Improved Word Vectors (IWV) are very effective for sentiment analysis

    Advancing NLP with Cognitive Language Processing Signals

    Full text link
    When we read, our brain processes language and generates cognitive processing data such as gaze patterns and brain activity. These signals can be recorded while reading. Cognitive language processing data such as eye-tracking features have shown improvements on single NLP tasks. We analyze whether using such human features can show consistent improvement across tasks and data sources. We present an extensive investigation of the benefits and limitations of using cognitive processing data for NLP. Specifically, we use gaze and EEG features to augment models of named entity recognition, relation classification, and sentiment analysis. These methods significantly outperform the baselines and show the potential and current limitations of employing human language processing data for NLP

    Detecting Perceived Emotions in Hurricane Disasters

    Full text link
    Natural disasters (e.g., hurricanes) affect millions of people each year, causing widespread destruction in their wake. People have recently taken to social media websites (e.g., Twitter) to share their sentiments and feelings with the larger community. Consequently, these platforms have become instrumental in understanding and perceiving emotions at scale. In this paper, we introduce HurricaneEmo, an emotion dataset of 15,000 English tweets spanning three hurricanes: Harvey, Irma, and Maria. We present a comprehensive study of fine-grained emotions and propose classification tasks to discriminate between coarse-grained emotion groups. Our best BERT model, even after task-guided pre-training which leverages unlabeled Twitter data, achieves only 68% accuracy (averaged across all groups). HurricaneEmo serves not only as a challenging benchmark for models but also as a valuable resource for analyzing emotions in disaster-centric domains.Comment: Accepted to ACL 2020; code available at https://github.com/shreydesai/hurrican

    W2VLDA: Almost Unsupervised System for Aspect Based Sentiment Analysis

    Full text link
    With the increase of online customer opinions in specialised websites and social networks, the necessity of automatic systems to help to organise and classify customer reviews by domain-specific aspect/categories and sentiment polarity is more important than ever. Supervised approaches to Aspect Based Sentiment Analysis obtain good results for the domain/language their are trained on, but having manually labelled data for training supervised systems for all domains and languages are usually very costly and time consuming. In this work we describe W2VLDA, an almost unsupervised system based on topic modelling, that combined with some other unsupervised methods and a minimal configuration, performs aspect/category classifiation, aspect-terms/opinion-words separation and sentiment polarity classification for any given domain and language. We evaluate the performance of the aspect and sentiment classification in the multilingual SemEval 2016 task 5 (ABSA) dataset. We show competitive results for several languages (English, Spanish, French and Dutch) and domains (hotels, restaurants, electronic-devices)

    Beneath the Tip of the Iceberg: Current Challenges and New Directions in Sentiment Analysis Research

    Full text link
    Sentiment analysis as a field has come a long way since it was first introduced as a task nearly 20 years ago. It has widespread commercial applications in various domains like marketing, risk management, market research, and politics, to name a few. Given its saturation in specific subtasks -- such as sentiment polarity classification -- and datasets, there is an underlying perception that this field has reached its maturity. In this article, we discuss this perception by pointing out the shortcomings and under-explored, yet key aspects of this field that are necessary to attain true sentiment understanding. We analyze the significant leaps responsible for its current relevance. Further, we attempt to chart a possible course for this field that covers many overlooked and unanswered questions.Comment: Published in the IEEE Transactions on Affective Computing (TAFFC

    Empirical Evaluation of Leveraging Named Entities for Arabic Sentiment Analysis

    Full text link
    Social media reflects the public attitudes towards specific events. Events are often related to persons, locations or organizations, the so-called Named Entities. This can define Named Entities as sentiment-bearing components. In this paper, we dive beyond Named Entities recognition to the exploitation of sentiment-annotated Named Entities in Arabic sentiment analysis. Therefore, we develop an algorithm to detect the sentiment of Named Entities based on the majority of attitudes towards them. This enabled tagging Named Entities with proper tags and, thus, including them in a sentiment analysis framework of two models: supervised and lexicon-based. Both models were applied on datasets of multi-dialectal content. The results revealed that Named Entities have no considerable impact on the supervised model, while employing them in the lexicon-based model improved the classification performance and outperformed most of the baseline systems.Comment: 7 pages, 5 figures, 7 table

    Leveraging Sparse and Dense Feature Combinations for Sentiment Classification

    Full text link
    Neural networks are one of the most popular approaches for many natural language processing tasks such as sentiment analysis. They often outperform traditional machine learning models and achieve the state-of-art results on most tasks. However, many existing deep learning models are complex, difficult to train and provide a limited improvement over simpler methods. We propose a simple, robust and powerful model for sentiment classification. This model outperforms many deep learning models and achieves comparable results to other deep learning models with complex architectures on sentiment analysis datasets. We publish the code online.Comment: 4 page
    • …
    corecore