15,475 research outputs found

    Cross-domain sentiment classification using a sentiment sensitive thesaurus

    Get PDF
    Automatic classification of sentiment is important for numerous applications such as opinion mining, opinion summarization, contextual advertising, and market analysis. However, sentiment is expressed differently in different domains, and annotating corpora for every possible domain of interest is costly. Applying a sentiment classifier trained using labeled data for a particular domain to classify sentiment of user reviews on a different domain often results in poor performance. We propose a method to overcome this problem in cross-domain sentiment classification. First, we create a sentiment sensitive distributional thesaurus using labeled data for the source domains and unlabeled data for both source and target domains. Sentiment sensitivity is achieved in the thesaurus by incorporating document level sentiment labels in the context vectors used as the basis for measuring the distributional similarity between words. Next, we use the created thesaurus to expand feature vectors during train and test times in a binary classifier. The proposed method significantly outperforms numerous baselines and returns results that are comparable with previously proposed cross-domain sentiment classification methods. We conduct an extensive empirical analysis of the proposed method on single and multi-source domain adaptation, unsupervised and supervised domain adaptation, and numerous similarity measures for creating the sentiment sensitive thesaurus

    Learning to predict distributions of words across domains

    Get PDF
    Although the distributional hypothesis has been applied successfully in many natural language processing tasks, systems using distributional information have been limited to a single domain because the distribution of a word can vary between domains as the word’s predominant meaning changes. However, if it were possible to predict how the distribution of a word changes from one domain to another, the predictions could be used to adapt a system trained in one domain to work in another. We propose an unsupervised method to predict the distribution of a word in one domain, given its distribution in another domain. We evaluate our method on two tasks: cross-domain part-of-speech tagging and cross-domain sentiment classification. In both tasks, our method significantly outperforms competitive baselines and returns results that are statistically comparable to current state-of-the-art methods, while requiring no task-specific customisations

    Adversarial Training in Affective Computing and Sentiment Analysis: Recent Advances and Perspectives

    Get PDF
    Over the past few years, adversarial training has become an extremely active research topic and has been successfully applied to various Artificial Intelligence (AI) domains. As a potentially crucial technique for the development of the next generation of emotional AI systems, we herein provide a comprehensive overview of the application of adversarial training to affective computing and sentiment analysis. Various representative adversarial training algorithms are explained and discussed accordingly, aimed at tackling diverse challenges associated with emotional AI systems. Further, we highlight a range of potential future research directions. We expect that this overview will help facilitate the development of adversarial training for affective computing and sentiment analysis in both the academic and industrial communities
    corecore