783 research outputs found

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail

    Sentiment Analysis of Movie Review using Machine Learning Approach

    Get PDF
    With development of Internet and Natural Language processing, use of regional languages is also grown for communication. Sentiment analysis is natural language processing task that extracts useful information from various data forms such as reviews and categorize them on basis of polarity. One of the sub-domain of opinion mining is sentiment analysis which is basically focused on the extraction of emotions and opinions of the people towards a particular topic from textual data. In this paper, sentiment analysis is performed on IMDB movie review database. We examine the sentiment expression to classify the polarity of the movie review on a scale of negative to positive and perform feature extraction and ranking and use these features to train our multilevel classifier to classify the movie review into its correct label. In this paper classification of movie reviews into positive and negative classes with the help of machine learning. Proposed approach using classification techniques has the best accuracy of about 99%

    Application of Artificial Intelligence in Detection and Mitigation of Human Factor Errors in Nuclear Power Plants: A Review

    Get PDF
    Human factors and ergonomics have played an essential role in increasing the safety and performance of operators in the nuclear energy industry. In this critical review, we examine how artificial intelligence (AI) technologies can be leveraged to mitigate human errors, thereby improving the safety and performance of operators in nuclear power plants (NPPs). First, we discuss the various causes of human errors in NPPs. Next, we examine the ways in which AI has been introduced to and incorporated into different types of operator support systems to mitigate these human errors. We specifically examine (1) operator support systems, including decision support systems, (2) sensor fault detection systems, (3) operation validation systems, (4) operator monitoring systems, (5) autonomous control systems, (6) predictive maintenance systems, (7) automated text analysis systems, and (8) safety assessment systems. Finally, we provide some of the shortcomings of the existing AI technologies and discuss the challenges still ahead for their further adoption and implementation to provide future research directions

    Main Concepts, State of the Art and Future Research Questions in Sentiment Analysis.

    Get PDF
    This article has multiple objectives. First of all, the fundamental concepts and challenges of the research field known as Sentiment Analysis (SA) are presented. Secondly, a summary of a chronological account of the research performed in SA is provided as well as some bibliometric indicators that shed some light on the most frequently used techniques for addressing the central aspects of SA. The geographical locations of where the research took place are also given. In closing, it is argued that there is no hard evidence that fuzzy sets or hybrid approaches encompassing unsupervised learning, fuzzy sets and a solid psychological background of emotions could not be at least as effective as supervised learning techniques

    Subjectivity Analysis In Opinion Mining - A Systematic Literature Review

    Get PDF
    Subjectivity analysis determines existence of subjectivity in text using subjective clues.It is the first task in opinion mining process.The difference between subjectivity analysis and polarity determination is the latter process subjective text to determine the orientation as positive or negative.There were many techniques used to solve the problem of segregating subjective and objective text.This paper used systematic literature review (SLR) to compile the undertaking study in subjective analysis.SLR is a literature review that collects multiple and critically analyse multiple studies to answer the research questions.Eight research questions were drawn for this purpose.Information such as technique,corpus,subjective clues representation and performance were extracted from 97 articles known as primary studies.This information was analysed to identify the strengths and weaknesses of the technique,affecting elements to the performance and missing elements from the subjectivity analysis.The SLR has found that majority of the study are using machine learning approach to identify and learn subjective text due to the nature of subjectivity analysis problem that is viewed as classification problem.The performance of this approach outperformed other approaches though currently it is at satisfactory level.Therefore,more studies are needed to improve the performance of subjectivity analysis

    On the development of decision-making systems based on fuzzy models to assess water quality in rivers

    Get PDF
    There are many situations where a linguistic description of complex phenomena allows better assessments. It is well known that the assessment of water quality continues depending heavily upon subjective judgments and interpretation, despite the huge datasets available nowadays. In that sense, the aim of this study has been to introduce intelligent linguistic operations to analyze databases, and produce self interpretable water quality indicators, which tolerate both imprecision and linguistic uncertainty. Such imprecision typically reflects the ambiguity of human thinking when perceptions need to be expressed. Environmental management concepts such as: "water quality", "level of risk", or "ecological status" are ideally dealt with linguistic variables. In the present Thesis, the flexibility of computing with words offered by fuzzy logic has been considered in these management issues. Firstly, a multipurpose hierarchical water quality index has been designed with fuzzy reasoning. It integrates a wide set of indicators including: organic pollution, nutrients, pathogens, physicochemical macro-variables, and priority micro-contaminants. Likewise, the relative importance of the water quality indicators has been dealt with the analytic hierarchy process, a decision-aiding method. Secondly, a methodology based on a hybrid approach that combines fuzzy inference systems and artificial neural networks has been used to classify ecological status in surface waters according to the Water Framework Directive. This methodology has allowed dealing efficiently with the non-linearity and subjective nature of variables involved in this classification problem. The complexity of inference systems, the appropriate choice of linguistic rules, and the influence of the functions that transform numerical variables into linguistic variables have been studied. Thirdly, a concurrent neuro-fuzzy model based on screening ecological risk assessment has been developed. It has considered the presence of hazardous substances in rivers, and incorporates an innovative ranking and scoring system, based on a self-organizing map, to account for the likely ecological hazards posed by the presence of chemical substances in freshwater ecosystems. Hazard factors are combined with environmental concentrations within fuzzy inference systems to compute ecological risk potentials under linguistic uncertainty. The estimation of ecological risk potentials allows identifying those substances requiring stricter controls and further rigorous risk assessment. Likewise, the aggregation of ecological risk potentials, by means of empirical cumulative distribution functions, has allowed estimating changes in water quality over time. The neuro-fuzzy approach has been validated by comparison with biological monitoring. Finally, a hierarchical fuzzy inference system to deal with sediment based ecological risk assessment has been designed. The study was centered in sediments, since they produce complementary findings to water quality analysis, especially when temporal trends are required. Results from chemical and eco-toxicological analyses have been used as inputs to two parallel inference systems which assess levels of contamination and toxicity, respectively. Results from both inference engines are then treated in a third inference engine which provides a final risk characterization, where the risk is provided in linguistic terms, with their respective degrees of certitude. Inputs to the risk system have been the levels of potentially toxic substances, mainly metals and chlorinated organic compounds, and the toxicity measured with a screening test which uses the photo-luminescent bacteria Vibrio fischeri. The Ebro river basin has been selected as case study, although the methodologies here explained can easily be applied to other rivers. In conclusion, this study has broadly demonstrated that the design of water quality indexes, based on fuzzy logic, emerges as suitable and alternative tool to support decision makers involved in effective sustainable river basin management plans.Existen diversas situaciones en las cuales la descripción en términos lingüísticos de fenómenos complejos permite mejores resultados. A pesar de los volúmenes de información cuantitativa que se manejan actualmente, es bien sabido que la gestión de la calidad del agua todavía obedece a juicios subjetivos y de interpretación de los expertos. Por tanto, el reto en este trabajo ha sido la introducción de operaciones lógicas que computen con palabras durante el análisis de los datos, para la elaboración de indicadores auto-interpretables de calidad del agua, que toleren la imprecisión e incertidumbre lingüística. Esta imprecisión típicamente refleja la ambigüedad del pensamiento humano para expresar percepciones. De allí que las variables lingüísticas se presenten como muy atractivas para el manejo de conceptos de la gestión medioambiental, como es el caso de la "calidad del agua", el "nivel de riesgo" o el "estado ecológico". Por tanto, en la presente Tesis, la flexibilidad de la lógica difusa para computar con palabras se ha adaptado a diversos tópicos en la gestión de la calidad del agua. Primero, se desarrolló un índice jerárquico multipropósito de calidad del agua que se obtuvo mediante razonamiento difuso. El índice integra un extenso grupo de indicadores que incluyen: contaminación orgánica, nutrientes, patógenos, variables macroscópicas, así como sustancias prioritarias micro-contaminantes. La importancia relativa de los indicadores al interior del sistema de inferencia se estimó con un método de análisis de decisiones, llamado proceso jerárquico analítico. En una segunda fase, se utilizó una metodología híbrida que combina los sistemas de inferencia difusos y las redes neuronales artificiales, conocida como neuro-fuzzy, para el estudio de la clasificación del estado ecológico de los ríos, de acuerdo con los lineamientos de la Directiva Marco de Aguas. Esta metodología permitió un manejo adecuado de la no-linealidad y naturaleza subjetiva de las variables involucradas en este problema clasificatorio. Con ella, se estudió la complejidad de los sistemas de inferencia, la selección apropiada de reglas lingüísticas y la influencia de las funciones que transforman las variables numéricas en lingüísticas. En una tercera fase, se desarrolló un modelo conceptual neuro-fuzzy concurrente basado en la metodología de evaluación de riesgo ecológico preliminar. Este modelo consideró la presencia de sustancias peligrosas en los ríos, e incorporó un mapa auto-organizativo para clasificar las sustancias químicas, en términos de su peligrosidad hacia los ecosistemas acuáticos. Con este modelo se estimaron potenciales de riesgo ecológico por combinación de factores de peligrosidad y de concentraciones de las sustancias químicas en el agua. Debido a la alta imprecisión e incertidumbre lingüística, estos potenciales se obtuvieron mediante sistemas de inferencia difusos, y se integraron por medio de distribuciones empíricas acumuladas, con las cuales se pueden analizar cambios espacio-temporales en la calidad del agua. Finalmente, se diseñó un sistema jerárquico de inferencia difuso para la evaluación del riesgo ecológico en sedimentos de ribera. Este sistema estima los grados de contaminación, toxicidad y riesgo en los sedimentos en términos lingüísticos, con sus respectivos niveles de certeza. El sistema se alimenta con información proveniente de análisis químicos, que detectan la presencia de sustancias micro-contaminantes, y de ensayos eco-toxicológicos tipo "screening" que usan la bacteria Vibrio fischeri. Como caso de estudio se seleccionó la cuenca del río Ebro, aunque las metodologías aquí desarrolladas pueden aplicarse fácilmente a otros ríos. En conclusión, este trabajo demuestra ampliamente que el diseño y aplicación de indicadores de calidad de las aguas, basados en la metodología de la lógica difusa, constituyen una herramienta sencilla y útil para los tomadores de decisiones encargados de la gestión sostenible de las cuencas hidrográficas

    Machine Learning in Resource-constrained Devices: Algorithms, Strategies, and Applications

    Get PDF
    The ever-increasing growth of technologies is changing people's everyday life. As a major consequence: 1) the amount of available data is growing and 2) several applications rely on battery supplied devices that are required to process data in real time. In this scenario the need for ad-hoc strategies for the development of low-power and low-latency intelligent systems capable of learning inductive rules from data using a modest mount of computational resources is becoming vital. At the same time, one needs to develop specic methodologies to manage complex patterns such as text and images. This Thesis presents different approaches and techniques for the development of fast learning models explicitly designed to be hosted on embedded systems. The proposed methods proved able to achieve state-of-the-art performances in term of the trade-off between generalization capabilities and area requirements when implemented in low-cost digital devices. In addition, advanced strategies for ecient sentiment analysis in text and images are proposed
    corecore