85 research outputs found

    Informal proof, formal proof, formalism

    Get PDF
    Increases in the use of automated theorem-provers have renewed focus on the relationship between the informal proofs normally found in mathematical research and fully formalised derivations. Whereas some claim that any correct proof will be underwritten by a fully formal proof, sceptics demur. In this paper I look at the relevance of these issues for formalism, construed as an anti-platonistic metaphysical doctrine. I argue that there are strong reasons to doubt that all proofs are fully formalisable, if formal proofs are required to be finitary, but that, on a proper view of the way in which formal proofs idealise actual practice, this restriction is unjustified and formalism is not threatened

    Improving legibility of natural deduction proofs is not trivial

    Full text link
    In formal proof checking environments such as Mizar it is not merely the validity of mathematical formulas that is evaluated in the process of adoption to the body of accepted formalizations, but also the readability of the proofs that witness validity. As in case of computer programs, such proof scripts may sometimes be more and sometimes be less readable. To better understand the notion of readability of formal proofs, and to assess and improve their readability, we propose in this paper a method of improving proof readability based on Behaghel's First Law of sentence structure. Our method maximizes the number of local references to the directly preceding statement in a proof linearisation. It is shown that our optimization method is NP-complete.Comment: 33 page

    Gradual computerisation and verification of mathematics : MathLang's path into Mizar

    Get PDF
    There are many proof checking tools that allow capturing mathematical knowledge into formal representation. Those proof systems allow further automatic verifica- tion of the logical correctness of the captured knowledge. However, the process of encoding common mathematical documents in a chosen proof system is still labour- intensive and requires comprehensive knowledge of such system. This makes the use of proof checking tools inaccessible for ordinary mathematicians. This thesis provides a solution for the computerisation of mathematical documents via a num- ber of gradual steps using the MathLang framework. We express the full process of formalisation into the Mizar proof checker. The first levels of such gradual computerisation path have been developing well before the course of this PhD started. The whole project, called MathLang, dates back to 2000 when F. Kamareddine and J.B. Wells started expressing their ideas of novel approach for computerising mathematical texts. They mainly aimed at developing a mathematical framework which is flexible enough to connect existing, in many cases different, approaches of computerisation mathematics, which allows various degrees of formalisation (e.g., partial, full formalisation of chosen parts, or full formalisation of the entire doc- ument), which is compatible with different mathematical foundations (e.g., type theory, set theory, category theory, etc.) and proof systems (e.g., Mizar, Isar, Coq, HOL, Vampire). The first two steps in the gradual formalisation were developed by F. Kamareddine, J.B. Wells and M. Maarek with a small contribution of R. Lamar to the second step. In this thesis we develop the third level of the gradual path, which aims at capturing the rhetorical structure of mathematical documents. We have also integrated further steps of the gradual formalisation, whose final goal is the Mizar system. We present in this thesis a full path of computerisation and formalisation of math- ematical documents into the Mizar proof checker using the MathLang framework. The development of this method was driven by the experience of computerising a number of mathematical documents (covering different authoring styles)

    Syntactic-Semantic Form of Mizar Articles

    Get PDF
    Mizar Mathematical Library is most appreciated for the wealth of mathematical knowledge it contains. However, accessing this publicly available huge corpus of formalized data is not straightforward due to the complexity of the underlying Mizar language, which has been designed to resemble informal mathematical papers. For this reason, most systems exploring the library are based on an internal XML representation format used by semantic modules of Mizar. This representation is easily accessible, but it lacks certain syntactic information available only in the original human-readable Mizar source files. In this paper we propose a new XML-based format which combines both syntactic and semantic data. It is intended to facilitate various applications of the Mizar library requiring fullest possible information to be retrieved from the formalization files
    • …
    corecore