6,371 research outputs found

    Source side pre-ordering using recurrent neural networks for English-Myanmar machine translation

    Get PDF
    Word reordering has remained one of the challenging problems for machine translation when translating between language pairs with different word orders e.g. English and Myanmar. Without reordering between these languages, a source sentence may be translated directly with similar word order and translation can not be meaningful. Myanmar is a subject-objectverb (SOV) language and an effective reordering is essential for translation. In this paper, we applied a pre-ordering approach using recurrent neural networks to pre-order words of the source Myanmar sentence into target English’s word order. This neural pre-ordering model is automatically derived from parallel word-aligned data with syntactic and lexical features based on dependency parse trees of the source sentences. This can generate arbitrary permutations that may be non-local on the sentence and can be combined into English-Myanmar machine translation. We exploited the model to reorder English sentences into Myanmar-like word order as a preprocessing stage for machine translation, obtaining improvements quality comparable to baseline rule-based pre-ordering approach on asian language treebank (ALT) corpus

    Text Coherence Analysis Based on Deep Neural Network

    Full text link
    In this paper, we propose a novel deep coherence model (DCM) using a convolutional neural network architecture to capture the text coherence. The text coherence problem is investigated with a new perspective of learning sentence distributional representation and text coherence modeling simultaneously. In particular, the model captures the interactions between sentences by computing the similarities of their distributional representations. Further, it can be easily trained in an end-to-end fashion. The proposed model is evaluated on a standard Sentence Ordering task. The experimental results demonstrate its effectiveness and promise in coherence assessment showing a significant improvement over the state-of-the-art by a wide margin.Comment: 4 pages, 2 figures, CIKM 201

    Order-Preserving Abstractive Summarization for Spoken Content Based on Connectionist Temporal Classification

    Full text link
    Connectionist temporal classification (CTC) is a powerful approach for sequence-to-sequence learning, and has been popularly used in speech recognition. The central ideas of CTC include adding a label "blank" during training. With this mechanism, CTC eliminates the need of segment alignment, and hence has been applied to various sequence-to-sequence learning problems. In this work, we applied CTC to abstractive summarization for spoken content. The "blank" in this case implies the corresponding input data are less important or noisy; thus it can be ignored. This approach was shown to outperform the existing methods in term of ROUGE scores over Chinese Gigaword and MATBN corpora. This approach also has the nice property that the ordering of words or characters in the input documents can be better preserved in the generated summaries.Comment: Accepted by Interspeech 201

    Energy-Efficient Inference Accelerator for Memory-Augmented Neural Networks on an FPGA

    Full text link
    Memory-augmented neural networks (MANNs) are designed for question-answering tasks. It is difficult to run a MANN effectively on accelerators designed for other neural networks (NNs), in particular on mobile devices, because MANNs require recurrent data paths and various types of operations related to external memory access. We implement an accelerator for MANNs on a field-programmable gate array (FPGA) based on a data flow architecture. Inference times are also reduced by inference thresholding, which is a data-based maximum inner-product search specialized for natural language tasks. Measurements on the bAbI data show that the energy efficiency of the accelerator (FLOPS/kJ) was higher than that of an NVIDIA TITAN V GPU by a factor of about 125, increasing to 140 with inference thresholdingComment: Accepted to DATE 201
    corecore