30,489 research outputs found

    Approximate text generation from non-hierarchical representations in a declarative framework

    Get PDF
    This thesis is on Natural Language Generation. It describes a linguistic realisation system that translates the semantic information encoded in a conceptual graph into an English language sentence. The use of a non-hierarchically structured semantic representation (conceptual graphs) and an approximate matching between semantic structures allows us to investigate a more general version of the sentence generation problem where one is not pre-committed to a choice of the syntactically prominent elements in the initial semantics. We show clearly how the semantic structure is declaratively related to linguistically motivated syntactic representation — we use D-Tree Grammars which stem from work on Tree-Adjoining Grammars. The declarative specification of the mapping between semantics and syntax allows for different processing strategies to be exploited. A number of generation strategies have been considered: a pure topdown strategy and a chart-based generation technique which allows partially successful computations to be reused in other branches of the search space. Having a generator with increased paraphrasing power as a consequence of using non-hierarchical input and approximate matching raises the issue whether certain 'better' paraphrases can be generated before others. We investigate preference-based processing in the context of generation

    25 years development of knowledge graph theory: the results and the challenge

    Get PDF
    The project on knowledge graph theory was begun in 1982. At the initial stage, the goal was to use graphs to represent knowledge in the form of an expert system. By the end of the 80's expert systems in medical and social science were developed successfully using knowledge graph theory. In the following stage, the goal of the project was broadened to represent natural language by knowledge graphs. Since then, this theory can be considered as one of the methods to deal with natural language processing. At the present time knowledge graph representation has been proven to be a method that is language independent. The theory can be applied to represent almost any characteristic feature in various languages.\ud The objective of the paper is to summarize the results of 25 years of development of knowledge graph theory and to point out some challenges to be dealt with in the next stage of the development of the theory. The paper will give some highlight on the difference between this theory and other theories like that of conceptual graphs which has been developed and presented by Sowa in 1984 and other theories like that of formal concept analysis by Wille or semantic networks

    An approach to graph-based analysis of textual documents

    Get PDF
    In this paper a new graph-based model is proposed for the representation of textual documents. Graph-structures are obtained from textual documents by making use of the well-known Part-Of-Speech (POS) tagging technique. More specifically, a simple rule-based (re) classifier is used to map each tag onto graph vertices and edges. As a result, a decomposition of textual documents is obtained where tokens are automatically parsed and attached to either a vertex or an edge. It is shown how textual documents can be aggregated through their graph-structures and finally, it is shown how vertex-ranking methods can be used to find relevant tokens.(1)

    Structural parsing

    Get PDF
    Parsing is an essential part of natural language processing. In this paper, structural parsing, which is based on the theory of knowledge graphs, is introduced. Under consideration of the semantic and syntactic features of natural language, both semantic and syntactic word graphs are formed. Grammar rules are derived from the syntactic word graphs. Due to the distinctions between Chinese and English, the grammar rules are given for the Chinese version and the English version of syntactic word graphs respectively. By traditional parsing a parse tree can then be given for a sentence, that can be used to map the sentence on a sentence graph. This is called structural parsing. The relationship with utterance paths is discussed. As a result, chunk indicators are proposed to guide structural parsing

    Query-Based Summarization using Rhetorical Structure Theory

    Get PDF
    Research on Question Answering is focused mainly on classifying the question type and finding the answer. Presenting the answer in a way that suits the user’s needs has received little attention. This paper shows how existing question answering systems—which aim at finding precise answers to questions—can be improved by exploiting summarization techniques to extract more than just the answer from the document in which the answer resides. This is done using a graph search algorithm which searches for relevant sentences in the discourse structure, which is represented as a graph. The Rhetorical Structure Theory (RST) is used to create a graph representation of a text document. The output is an extensive answer, which not only answers the question, but also gives the user an opportunity to assess the accuracy of the answer (is this what I am looking for?), and to find additional information that is related to the question, and which may satisfy an information need. This has been implemented in a working multimodal question answering system where it operates with two independently developed question answering modules

    Information extraction

    Get PDF
    In this paper we present a new approach to extract relevant information by knowledge graphs from natural language text. We give a multiple level model based on knowledge graphs for describing template information, and investigate the concept of partial structural parsing. Moreover, we point out that expansion of concepts plays an important role in thinking, so we study the expansion of knowledge graphs to use context information for reasoning and merging of templates

    Unpaired Image Captioning via Scene Graph Alignments

    Full text link
    Most of current image captioning models heavily rely on paired image-caption datasets. However, getting large scale image-caption paired data is labor-intensive and time-consuming. In this paper, we present a scene graph-based approach for unpaired image captioning. Our framework comprises an image scene graph generator, a sentence scene graph generator, a scene graph encoder, and a sentence decoder. Specifically, we first train the scene graph encoder and the sentence decoder on the text modality. To align the scene graphs between images and sentences, we propose an unsupervised feature alignment method that maps the scene graph features from the image to the sentence modality. Experimental results show that our proposed model can generate quite promising results without using any image-caption training pairs, outperforming existing methods by a wide margin.Comment: Accepted in ICCV 201
    • 

    corecore