1,250 research outputs found

    Text to 3D Scene Generation with Rich Lexical Grounding

    Full text link
    The ability to map descriptions of scenes to 3D geometric representations has many applications in areas such as art, education, and robotics. However, prior work on the text to 3D scene generation task has used manually specified object categories and language that identifies them. We introduce a dataset of 3D scenes annotated with natural language descriptions and learn from this data how to ground textual descriptions to physical objects. Our method successfully grounds a variety of lexical terms to concrete referents, and we show quantitatively that our method improves 3D scene generation over previous work using purely rule-based methods. We evaluate the fidelity and plausibility of 3D scenes generated with our grounding approach through human judgments. To ease evaluation on this task, we also introduce an automated metric that strongly correlates with human judgments.Comment: 10 pages, 7 figures, 3 tables. To appear in ACL-IJCNLP 201

    Robust Grammatical Analysis for Spoken Dialogue Systems

    Full text link
    We argue that grammatical analysis is a viable alternative to concept spotting for processing spoken input in a practical spoken dialogue system. We discuss the structure of the grammar, and a model for robust parsing which combines linguistic sources of information and statistical sources of information. We discuss test results suggesting that grammatical processing allows fast and accurate processing of spoken input.Comment: Accepted for JNL

    Getting Past the Language Gap: Innovations in Machine Translation

    Get PDF
    In this chapter, we will be reviewing state of the art machine translation systems, and will discuss innovative methods for machine translation, highlighting the most promising techniques and applications. Machine translation (MT) has benefited from a revitalization in the last 10 years or so, after a period of relatively slow activity. In 2005 the field received a jumpstart when a powerful complete experimental package for building MT systems from scratch became freely available as a result of the unified efforts of the MOSES international consortium. Around the same time, hierarchical methods had been introduced by Chinese researchers, which allowed the introduction and use of syntactic information in translation modeling. Furthermore, the advances in the related field of computational linguistics, making off-the-shelf taggers and parsers readily available, helped give MT an additional boost. Yet there is still more progress to be made. For example, MT will be enhanced greatly when both syntax and semantics are on board: this still presents a major challenge though many advanced research groups are currently pursuing ways to meet this challenge head-on. The next generation of MT will consist of a collection of hybrid systems. It also augurs well for the mobile environment, as we look forward to more advanced and improved technologies that enable the working of Speech-To-Speech machine translation on hand-held devices, i.e. speech recognition and speech synthesis. We review all of these developments and point out in the final section some of the most promising research avenues for the future of MT

    Automatic Population of Structured Reports from Narrative Pathology Reports

    Get PDF
    There are a number of advantages for the use of structured pathology reports: they can ensure the accuracy and completeness of pathology reporting; it is easier for the referring doctors to glean pertinent information from them. The goal of this thesis is to extract pertinent information from free-text pathology reports and automatically populate structured reports for cancer diseases and identify the commonalities and differences in processing principles to obtain maximum accuracy. Three pathology corpora were annotated with entities and relationships between the entities in this study, namely the melanoma corpus, the colorectal cancer corpus and the lymphoma corpus. A supervised machine-learning based-approach, utilising conditional random fields learners, was developed to recognise medical entities from the corpora. By feature engineering, the best feature configurations were attained, which boosted the F-scores significantly from 4.2% to 6.8% on the training sets. Without proper negation and uncertainty detection, the quality of the structured reports will be diminished. The negation and uncertainty detection modules were built to handle this problem. The modules obtained overall F-scores ranging from 76.6% to 91.0% on the test sets. A relation extraction system was presented to extract four relations from the lymphoma corpus. The system achieved very good performance on the training set, with 100% F-score obtained by the rule-based module and 97.2% F-score attained by the support vector machines classifier. Rule-based approaches were used to generate the structured outputs and populate them to predefined templates. The rule-based system attained over 97% F-scores on the training sets. A pipeline system was implemented with an assembly of all the components described above. It achieved promising results in the end-to-end evaluations, with 86.5%, 84.2% and 78.9% F-scores on the melanoma, colorectal cancer and lymphoma test sets respectively

    Human-in-the-Loop Question Answering with Natural Language Interaction

    Get PDF
    Generalizing beyond the training examples is the primary goal of machine learning. In natural language processing (NLP), impressive models struggle to generalize when faced with test examples that differ from the training examples: e.g., in genre, domain, or language. I study interactive methods that overcome such limitations by seeking feedback from human users to successfully complete the task at hand and improve over time while on the job. Unlike previous work that adopts simple forms of feedback (e.g., labeling predictions as correct/wrong or answering yes/no clarification questions), I focus on using free-form natural language as the communication interface for providing feedback which can convey richer information and offer a more flexible interaction. An essential skill that language-based interactive systems should have is to understand user utterances in conversational contexts. I study conversational question answering (CQA) in which humans interact with a question answering (QA) system by asking a sequence of related questions. CQA requires models to link questions together to resolve the conversational dependencies between them such as coreference and ellipsis. I introduce question-in-context rewriting to reduce context-dependent conversational questions to independent stand-alone questions that can be answered with existing QA models. I collect a large dataset of human rewrites and I use it to evaluate a set of models for the question rewriting task. Next, I study semantic parsing in interactive settings in which users correct parsing errors using natural language feedback. Most existing work frames semantic parsing as a one-shot mapping task. I establish that the majority of parsing mistakes that recent neural text-to-SQL parsers make are minor. Hence, it is often feasible for humans to detect and suggest corrections for such mistakes if they have the opportunity to provide precise feedback. I describe an interactive text-to-SQL parsing system that enables users to inspect the inferred parses and correct any errors they find by providing feedback in free-form natural language. I construct SPLASH: a large dataset of SQL correction instances paired with a diverse set of human-authored natural language feedback utterances. Using SPLASH, I posed a new task: given a question paired with an initial erroneous SQL parse, to what extent can we correct the parse based on a provided natural language feedback? Then, I present NL-EDIT: a neural model for the correction task. NL-EDIT combines two key ideas: 1) interpreting the feedback in the context of the other elements of the interaction and, 2) explicitly generating edit operations to correct the initial query instead of re-generating the full query from scratch. I create a simple SQL editing language whose basic units are add/delete operations applied to different SQL clauses. I discuss evaluation methods that help understand the usefulness and limitations of semantic parse correction models. I conclude this thesis by identifying three broad research directions for further advancing collaborative human-computer NLP: (1) developing user-centered explanations, (2) designing and evaluating interaction mechanisms, and (3) learning from interactions

    Combination Strategies for Semantic Role Labeling

    Full text link
    This paper introduces and analyzes a battery of inference models for the problem of semantic role labeling: one based on constraint satisfaction, and several strategies that model the inference as a meta-learning problem using discriminative classifiers. These classifiers are developed with a rich set of novel features that encode proposition and sentence-level information. To our knowledge, this is the first work that: (a) performs a thorough analysis of learning-based inference models for semantic role labeling, and (b) compares several inference strategies in this context. We evaluate the proposed inference strategies in the framework of the CoNLL-2005 shared task using only automatically-generated syntactic information. The extensive experimental evaluation and analysis indicates that all the proposed inference strategies are successful -they all outperform the current best results reported in the CoNLL-2005 evaluation exercise- but each of the proposed approaches has its advantages and disadvantages. Several important traits of a state-of-the-art SRL combination strategy emerge from this analysis: (i) individual models should be combined at the granularity of candidate arguments rather than at the granularity of complete solutions; (ii) the best combination strategy uses an inference model based in learning; and (iii) the learning-based inference benefits from max-margin classifiers and global feedback
    corecore