294 research outputs found

    Sentence Centrality Revisited for Unsupervised Summarization

    Full text link
    Single document summarization has enjoyed renewed interests in recent years thanks to the popularity of neural network models and the availability of large-scale datasets. In this paper we develop an unsupervised approach arguing that it is unrealistic to expect large-scale and high-quality training data to be available or created for different types of summaries, domains, or languages. We revisit a popular graph-based ranking algorithm and modify how node (aka sentence) centrality is computed in two ways: (a)~we employ BERT, a state-of-the-art neural representation learning model to better capture sentential meaning and (b)~we build graphs with directed edges arguing that the contribution of any two nodes to their respective centrality is influenced by their relative position in a document. Experimental results on three news summarization datasets representative of different languages and writing styles show that our approach outperforms strong baselines by a wide margin.Comment: ACL 201

    SUPERT: Towards New Frontiers in Unsupervised Evaluation Metrics for Multi-Document Summarization

    Full text link
    We study unsupervised multi-document summarization evaluation metrics, which require neither human-written reference summaries nor human annotations (e.g. preferences, ratings, etc.). We propose SUPERT, which rates the quality of a summary by measuring its semantic similarity with a pseudo reference summary, i.e. selected salient sentences from the source documents, using contextualized embeddings and soft token alignment techniques. Compared to the state-of-the-art unsupervised evaluation metrics, SUPERT correlates better with human ratings by 18-39%. Furthermore, we use SUPERT as rewards to guide a neural-based reinforcement learning summarizer, yielding favorable performance compared to the state-of-the-art unsupervised summarizers. All source code is available at https://github.com/yg211/acl20-ref-free-eval.Comment: ACL 202

    Self-Supervised and Controlled Multi-Document Opinion Summarization

    Full text link
    We address the problem of unsupervised abstractive summarization of collections of user generated reviews with self-supervision and control. We propose a self-supervised setup that considers an individual document as a target summary for a set of similar documents. This setting makes training simpler than previous approaches by relying only on standard log-likelihood loss. We address the problem of hallucinations through the use of control codes, to steer the generation towards more coherent and relevant summaries.Finally, we extend the Transformer architecture to allow for multiple reviews as input. Our benchmarks on two datasets against graph-based and recent neural abstractive unsupervised models show that our proposed method generates summaries with a superior quality and relevance.This is confirmed in our human evaluation which focuses explicitly on the faithfulness of generated summaries We also provide an ablation study, which shows the importance of the control setup in controlling hallucinations and achieve high sentiment and topic alignment of the summaries with the input reviews.Comment: 18 pages including 5 pages appendi

    Bipartite Graph Pre-training for Unsupervised Extractive Summarization with Graph Convolutional Auto-Encoders

    Full text link
    Pre-trained sentence representations are crucial for identifying significant sentences in unsupervised document extractive summarization. However, the traditional two-step paradigm of pre-training and sentence-ranking, creates a gap due to differing optimization objectives. To address this issue, we argue that utilizing pre-trained embeddings derived from a process specifically designed to optimize cohensive and distinctive sentence representations helps rank significant sentences. To do so, we propose a novel graph pre-training auto-encoder to obtain sentence embeddings by explicitly modelling intra-sentential distinctive features and inter-sentential cohesive features through sentence-word bipartite graphs. These pre-trained sentence representations are then utilized in a graph-based ranking algorithm for unsupervised summarization. Our method produces predominant performance for unsupervised summarization frameworks by providing summary-worthy sentence representations. It surpasses heavy BERT- or RoBERTa-based sentence representations in downstream tasks.Comment: Accepted by the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP 2023

    Unsupervised Multi-document Summarization with Holistic Inference

    Full text link
    Multi-document summarization aims to obtain core information from a collection of documents written on the same topic. This paper proposes a new holistic framework for unsupervised multi-document extractive summarization. Our method incorporates the holistic beam search inference method associated with the holistic measurements, named Subset Representative Index (SRI). SRI balances the importance and diversity of a subset of sentences from the source documents and can be calculated in unsupervised and adaptive manners. To demonstrate the effectiveness of our method, we conduct extensive experiments on both small and large-scale multi-document summarization datasets under both unsupervised and adaptive settings. The proposed method outperforms strong baselines by a significant margin, as indicated by the resulting ROUGE scores and diversity measures. Our findings also suggest that diversity is essential for improving multi-document summary performance.Comment: Findings of IJCNLP-AACL 202
    • …
    corecore