304 research outputs found

    Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli

    Get PDF
    Sensory memory is a short-lived persistence of a sensory stimulus in the nervous system, such as iconic memory in the visual system. However, little is known about the mechanisms underlying olfactory sensory memory. We have therefore analyzed the effect of odor stimuli on the first odor-processing network in the honeybee brain, the antennal lobe, which corresponds to the vertebrate olfactory bulb. We stained output neurons with a calcium-sensitive dye and measured across-glomerular patterns of spontaneous activity before and after a stimulus. Such a single-odor presentation changed the relative timing of spontaneous activity across glomeruli in accordance with Hebb's theory of learning. Moreover, during the first few minutes after odor presentation, correlations between the spontaneous activity fluctuations suffice to reconstruct the stimulus. As spontaneous activity is ubiquitous in the brain, modifiable fluctuations could provide an ideal substrate for Hebbian reverberations and sensory memory in other neural systems

    Odor coding and memory traces in the antennal lobe of honeybee

    Get PDF
    In dieser Arbeit werden zwei wesentliche neue Ergebnisse vorgestellt. Das erste bezieht sich auf die olfaktorische Kodierung und das zweite auf das sensorische Gedaechtnis. Beide Phaenomene werden am Beispiel des Gehirns der Honigbiene untersucht. In Bezug auf die olfaktorische Kodierung zeige ich, dass die neuronale Dynamik waehrend der Stimulation im Antennallobus duftspezifische Trajektorien beschreibt, die in duftspezifischen Attraktoren enden. Das Zeitinterval, in dem diese Attraktoren erreicht werden, betraegt unabhaengig von der Identitaet und der Konzentration des Duftes ungefaehr 800 ms. Darueber hinaus zeige ich, dass Support-Vektor Maschinen, und insbesondere Perzeptronen, ein realistisches und biologisches Model der Wechselwirkung zwischen dem Antennallobus (dem kodierenden Netwerk) und dem Pilzkoerper (dem dekodierenden Netzwerk) darstellen. Dieses Model kann sowohl Reaktionszeiten von ca. 300 ms als auch die Invarianz der Duftwahrnehmung gegenueber der Duftkonzentration erklaeren. In Bezug auf das sensorische Gedaechtnis zeige ich, dass eine einzige Stimulation ohne Belohnung dem Hebbschen Postulat folgend Veraenderungen der paarweisen Korrelationen zwischen Glomeruli induziert. Ich zeige, dass diese Veranderungen der Korrelationen bei 2/3 der Bienen ausreichen, um den letzten Stimulus zu bestimmen. In der zweiten Minute nach der Stimulation ist eine erfolgreiche Bestimmung des Stimulus nur bei 1/3 der Bienen moeglich. Eine Hauptkomponentenanalyse der spontanen Aktivitaet laesst erkennen, dass das dominante Muster des Netzwerks waehrend der spontanen Aktivitaet nach, aber nicht vor der Stimulation das duftinduzierte Aktivitaetsmuster bei 2/3 der Bienen nachbildet. Man kann deshalb die duftinduzierten (Veraenderungen der) Korrelationen als Spuren eines Kurzzeitgedaechtnisses bzw. als Hebbsche "Reverberationen" betrachtet werden.Two major novel results are reported in this work. The first concerns olfactory coding and the second concerns sensory memory. Both phenomena are investigated in the brain of the honeybee as a model system. Considering olfactory coding I demonstrate that the neural dynamics in the antennal lobe describe odor-specific trajectories during stimulation that converge to odor-specific attractors. The time interval to reach these attractors is, regardless of odor identity and concentration, approximately 800 ms. I show that support-vector machines and, in particular perceptrons provide a realistic and biological model of the interaction between the antennal lobe (coding network) and the mushroom body (decoding network). This model can also account for reaction-times of about 300 ms and for concentration invariance of odor perception. Regarding sensory memory I show that a single stimulation without reward induces changes of pairwise correlation between glomeruli in a Hebbian-like manner. I demonstrate that those changes of correlation suffice to retrieve the last stimulus presented in 2/3 of the bees studied. Succesful retrieval decays to 1/3 of the bees within the second minute after stimulation. In addition, a principal-component analysis of the spontaneous activity reveals that the dominant pattern of the network during the spontaneous activity after, but not before stimulation, reproduces the odor-induced activity pattern in 2/3 of the bees studied. One can therefore consider the odor-induced (changes of) correlation as traces of a short-term memory or as Hebbian reverberations

    Reconstructing the Population Activity of Olfactory Output Neurons that Innervate Identifiable Processing Units

    Get PDF
    We investigated the functional organization of the moth antennal lobe (AL), the primary olfactory network, by integrating single-cell electrophysiological recording data with geometrical information. The moth AL contains about 60 processing units called glomeruli that are identifiable from one animal to another. We were able to monitor the output information of the AL by recording the activity of a population of output neurons, each of which innervated a single glomerulus. Using compiled in vivo intracellular recordings and staining data from different animals, we mapped the odor-evoked dynamics on a digital atlas of the AL and geometrically reconstructed the population activity. We examined the quantitative relationship between the similarity of olfactory responses and the anatomical distance between glomeruli. Globally, the olfactory response profile was independent of the anatomical distance, although some local features were present. Olfactory response profiles of superficial glomeruli were approximately similar, whereas those of deep glomeruli were different with each other, suggesting network architectures are different in superficial and deep glomerular networks during olfactory processing

    Pharmacological analysis of ionotropic glutamate and GABA recptor function in neuronal circuits of the zebrafish olfactory bulb

    Get PDF
    In the olfactory bulb and other brain areas, basic cellular and synaptic properties of individual neurons have been studied extensively in reduced preparations. Nevertheless, it is still poorly understood how intactions between multiple neurons shape spatio-temporal activity patterns and give rise to the computational properties of the the intact circuit. In this thesis, I used pharmacological manipulations of excitatory and inhibitory neurotransmitter receptors to examine the synaptic interactions underlying spontaneous and odor-evoked activity patterns in the intact olfactory bulb of zebrafish. Electrophysiological and one- and two-photon calcium imaging methods were used to record activity from the principal neurons of the OB (mitral cells, MCs), their sensory input, and local interneurons. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of MCs, indicating that sensory input to the OB is mediated by ionotropic glutamate receptors. Surprisingly, however, the blockade of AMPA/Kainiate receptors alone increased the mean response of MCs and decreased the mean response of interneurons (INs), and the blockade of NMDA receptors caused little or no change in the mean responses of MCs and INs. In addition, antagonists of both glutamate receptor types had diverse effects on the magnitude and time course of individual MC and IN responses and, thus, changed spatio-temporal activity patterns across neuronal populations. The blockade of GABA(A) receptors increased spontaneous and odor evoked firing rates of mitral cells and often induced rhythmic bursting. Moreover, the blockade of, GABA(A) or AMPA/kainate receptors abolished fast oscillatory activity in the local field potential. Blockade of GABA(B) receptors reduced calcium influx in afferent sensory axons and modulated response time courses of mitral cells. These results indicate that (1) IN activity during an odor response depends mainly on AMPA/Kainiate receptor input, (2) interactions between MCs and INs regulate the total OB output activity, (3) AMPA/Kainiate receptors and GABA(A) receptors underly the synchronization of odor-dependent neuronal ensembles and (4) odor-specific patterns of OB output activity are shaped by circuits containing iGlu receptors and GABA receptors. These results provide insights into the mechanisms underlying the processing of odor-encoding activity patterns in the OB.Im olfaktorischen Bulbus (OB) und anderen Hirnarealen wurden grundlegende zelluläre und synaptische Eigenschaften der Einzelneurone ausführlich in reduzierten Präparaten studiert. Trotzdem ist kaum bekannt, wie die Interaktionen mehrerer Nervenzellen untereinander räumlich-zeitlich strukturierte Aktivitätsmuster formen und dadurch die rechnerischen Eigenschaften der intakten Schaltkreise entstehen. In dieser Arbeit nutzte ich pharmakologische Manipulationen der erregenden und hemmenden Neurotransmitter-Rezeptoren, um die synaptischen Interaktionen zu untersuchen, die spontanen und geruchsinduzierten Aktivitätsmustern im intakten OB des Zebrafisch zugrunde liegen. Methoden der Elektrophysiology sowie der konventionellen und Zwei-Photonen-Mikroskopie wurden genutzt, um Aktivität von Ausgangsneuronen des OB (Mitralzellen, MCs), ihrem sensorischen Eingang, und Interneuronen (INs) zu messen. Die gleichzeitige Blockierung von AMPA/Kainate- und NMDA-Rezeptoren verhinderte die geruchsinduzierte Erregung von MCs, was darauf hinweist, dass der sensorische Eingang des OB durch ionotrope Glutamatrezeptoren vermittelt wird. Die Blockierung von AMPA/Kainate Rezeptoren allein jedoch erhöhte überraschender Weise im Mittel die Antwort von MCs und reduzierte im Mittel die Antwort von INs. Die Blockierung von NMDA Rezeptoren allein lösten im Mittel geringe oder keine Veränderung der Antworten von MCs and INs aus. Außerdem hatten die Antagonisten für beide Glutamatrezeptoren unterschiedliche Einflüsse auf Größe und Zeitverlauf individueller MC- und IN- Antworten und veränderten daher das räumlich-zeitliche Aktivitätsmuster innerhalb der Nervenzellpopulation. Die Blockierung von GABA(A)-Rezeptoren erhöhte spontane und geruchsinduzierte Feuerraten in MCs und induzierten oft rhythmische, stoßweise Aktivität. Die Blockierung von GABA(A)- und AMPA/Kainate-Rezeptoren hob überdies geruchsinduzierte Oszillationen im Feldpotenzial auf. Die Blockierung von GABA(B)-Rezeptoren verringerte den Kalziumeinstrom in die Endigungen afferenter sensorischer Axone und modulierte den Zeitverlauf von MC-Antworten. Die Ergebnisse zeigen, dass (1) die Aktivität der Interneurone während der Geruchsantwort hauptsächlich von AMPA/Kainate-Rezeptoren abhängt, (2) die Interaktionen zwischen Mitralzellen und Interneuronen die Gesamtaktivität des Ausgangssingnales des olfaktorischen Bulbus regulieren, (3) AMPA/Kainate-Rezeptoren und GABA(A)-Rezeptoren der Synchronisation geruchsabhängiger Gruppen von Nervenzellen zugrunde liegen und (4) geruchsspezifische Muster im Ausgangssignal des olfaktorischen Bulbus durch Schaltkreise geformt werden, die iGlu Rezeptoren und GABA Rezeptoren enthalten. Diese Ergebnisse ermöglichen Einblick in die Mechanismen die der Verarbeitung geruchskodierender Aktivitätsmuster im olfaktorischen Bulbus unterliegen

    Pharmacological Analysis of Ionotropic Glutamate Receptor Function in Neuronal Circuits of the Zebrafish Olfactory Bulb

    Get PDF
    Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca2+ imaging. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations. Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These results indicate that (1) interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2) interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3) AMPA/kainate receptors participate in the synchronization of odor-dependent neuronal ensembles, and (4) ionotropic glutamate receptor-containing synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for the processing of odor-encoding activity patterns in the olfactory bulb

    Short-term memory and olfactory signal processing

    Get PDF
    Modern neural recording methodologies, including multi-electrode and optical recordings, allow us to monitor the large population of neurons with high temporal resolution. Such recordings provide rich datasets that are expected to understand better how information about the external world is internally represented and how these representations are altered over time. Achieving this goal requires the development of novel pattern recognition methods and/or the application of existing statistical methods in novel ways to gain insights into basic neural computational principles. In this dissertation, I will take this data-driven approach to dissect the role of short-term memory in olfactory signal processing in two relatively simple models of the olfactory system: fruit fly (Drosophila melanogaster) and locust (Schistocerca americana). First, I will focus on understanding how odor representations within a single stimulus exposure are refined across different populations of neurons (faster dynamics; on the order seconds) in the early olfactory circuits. Using light-sheet imaging datasets from transgenic flies expressing calcium indicators in select populations of neurons, I will reveal how odor representations are decorrelated over time in different neural populations. Further, I will examine how this computation is altered by short-term memory in this neural circuitry. Next, I will examine how neural representations for odorants at an ensemble level are altered across different exposures (slower dynamics; on the order of tens of seconds to minutes). I will examine the role of this short-term adaptation in altering neural representations for odor identity and intensity. Lastly, I will present approaches to help achieve robustness against both extrinsic and intrinsic perturbations of odor-evoked neural responses. I will conclude with a Boolean neural network inspired by the insect olfactory system and compare its performance against other state-of-the-art methods on standard machine learning benchmark datasets. In sum, this work will provide deeper insights into how short-term plasticity alters sensory neural representations and their computational significance

    Neural circuits mediating aversive olfactory conditioning in Drosophila

    Get PDF
    For all animals it is highly advantageous to associate an environmental sensory stimulus with a reinforcing experience. During associative learning, the neural representation of the sensory stimulus (conditioned stimulus; CS) converges in time and location with that of the reinforcer (unconditioned stimulus; US). The CS is then affiliated with a predictive value, altering the animal’s response towards it in following exposures. In my PhD thesis I made use of olfactory aversive conditioning in Drosophila to ask where these two different stimuli are represented and how they are processed in the nervous system to allow association. In the first part of my thesis, I investigated the presentation of the odor stimulus (CS) and its underlying neuronal pathway. CS-US association is possible even when the US is presented after the physical sensory stimulus is gone ('trace conditioning'). I compared such association of temporally non-overlapping stimuli to learning of overlapping stimuli ('delay conditioning'). I found that flies associate an odor trace with electric shock reinforcement even when they were separated with a 15 s gap. Memories after trace and delay conditioning have striking similarities: both reached the same asymptotic learning level, although at different rates, and both memories have similar decay kinetics and highly correlated generalization profiles across odors. Altogether, these results point at a common odor percept which is probably kept in the nervous system throughout and following odor presentation. In search of the physiological correlate of the odor trace, we used in vivo calcium imaging to characterize the odor-evoked activity of the olfactory receptor neurons (ORNs) in the antennal lobe (in collaboration with Alja Luedke, Konstanz University). After the offset of odor presentation, ORNs showed odor-specific response patterns that lasted for a few seconds and were fundamentally different from the response patterns during odor stimulation. Weak correlation between the behavioral odor generalization profile in trace conditioning and the physiological odor similarity profiles in the antennal lobe suggest that the odor trace used for associative learning may be encoded downstream of the ORNs. In the second part of the thesis I investigated the presentation of different aversive stimuli (USs) and their underlying neuronal pathways. I established an odor-temperature conditioning assay, comparable to the commonly used odor-shock conditioning, and compared the neural pathways mediating both memory types. I described a specific sensory pathway for increased temperature as an aversive reinforcement: the thermal sensors AC neurons, expressing dTrpA1 receptors. Despite the separate sensory pathways for odor-temperature and odor-shock conditioning, both converge to one central pathway: the dopamine neurons, generally signaling reinforcement in the fly brain. Although a common population of dopamine neurons mediates both reinforcement types, the population mediating temperature reinforcement is smaller, and probably included within the population of dopamine neurons mediating shock reinforcement. I conclude that dopamine neurons integrate different noxious signals into a general aversive reinforcement pathway. Altogether, my results contribute to our understanding of aversive olfactory conditioning, demonstrating previously undescribed behavioral abilities of flies and their neuronal representations
    corecore