3 research outputs found

    The Analysis of Comparison Electrical Power Measurement on LED Lamps

    Get PDF
     Abstract— This study uses 2 variations of the value of the DC 12V LED lamp power that is 12W and 15W with 3 different brands of lamp variations. Measurement of input voltage and current is carried out using a Krisbow KW06-490 DC clampmeter that has been calibrated as a standard measuring instrument and a Krisbow KW06-491 DC clampmeter that has not been calibrated as a test gauge 1 and a Multimeter Viper DT830B that has not been calibrated as a test gauge 2. Data the current and input voltage between each lamp and different lamp brands are used to calculate the value of the test lamp power and then compare it.The big conclusion from this study was found that the error value between the value of the test power or the use of DC 12V LED lamps with 12W written power on R, S, and T brand lamps was ± 51.67%, ± 70.75%, ± 61.33 %. In 15W lamps the brands R, S, and T were ± 7.20%, ± 0.53%, ± 8.27%

    Strategies and Techniques for Powering Wireless Sensor Nodes through Energy Harvesting and Wireless Power Transfer

    Get PDF
    The continuous development of the internet of things (IoT) infrastructure and applications is paving the way for advanced and innovative ideas and solutions, some of which are pushing the limits of state-of-the-art technology. The increasing demand for Wireless Sensor Nodes (WSNs) able to collect and transmit data through wireless communication channels, while often positioned in locations that are difficult to access, is driving research into innovative solutions involving energy harvesting (EH) and wireless power transfer (WPT) to eventually allow battery-free sensor nodes. Due to the pervasiveness of radio frequency (RF) energy, RF EH and WPT are key technologies with the potential to power IoT devices and smart sensing architectures involving nodes that need to be wireless, maintenance free, and sufficiently low in cost to promote their use almost anywhere. This paper presents a state-of-the-art, ultra-low power 2.5 W highly integrated mixed-signal system on chip (SoC), for multi-source energy harvesting and wireless power transfer. It introduces a novel architecture that integrates an ultra-low power intelligent power management, an RF to DC converter with very low power sensitivity and high power conversion efficiency (PCE), an Amplitude-Shift-Keying/Frequency-Shift-Keying (ASK/FSK) receiver and digital circuitry to achieve the advantage to cope, in a versatile way and with minimal use of external components, with the wide variety of energy sources and use cases. Diverse methods for powering wireless Sensor Nodes through energy harvesting and wireless power transfer are implemented providing related system architectures and experimental results

    Research challenges in Measurement for Internet of Things systems

    Get PDF
    In this paper, an overview of the research challenges in measurements for the design of Internet of Things (IoT) systems is proposed. To this end, a general architecture of an IoT system is presented, which is specialized according to two key requirements: the power supply capabilities of the infrastructure and the time delay constraints of the application. Guidelines for the design of an IoT system are summarized, and the measurement needs are highlighted. A review of the research contributions is given concerning three main measurement topics: (i) energy-aware data acquisition systems, (ii) localization of mobile IoT nodes, and (iii) precise synchronization protocols
    corecore