438 research outputs found

    A comprehensive review on brushless doubly-fed reluctance machine

    Get PDF
    The Brushless Doubly-Fed Reluctance Machine (BDFRM) has been widely investigated in numerous research studies since it is brushless and cageless and there is no winding on the rotor of this emerging machine. This feature leads to several advantages for this machine in comparison with its induction counterpart, i.e., Brushless Doubly-Fed Induction Machine (BDFIM). Less maintenance, less power losses, and also more reliability are the major advantages of BDFRM compared to BDFIM. The design complexity of its reluctance rotor, as well as flux patterns for indirect connection between the two windings mounted on the stator including power winding and control winding, have restricted the development of this machine technology. In the literature, there is not a comprehensive review of the research studies related to BDFRM. In this paper, the previous research studies are reviewed from different points of view, such as operation, design, control, transient model, dynamic model, power factor, Maximum Power Point Tracking (MPPT), and losses. It is revealed that the BDFRM is still evolving since the theoretical results have shown that this machine operates efficiently if it is well-designed

    A comprehensive review on brushless doubly-fed reluctance machine

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. The Brushless Doubly-Fed Reluctance Machine (BDFRM) has been widely investigated in numerous research studies since it is brushless and cageless and there is no winding on the rotor of this emerging machine. This feature leads to several advantages for this machine in comparison with its induction counterpart, i.e., Brushless Doubly-Fed Induction Machine (BDFIM). Less maintenance, less power losses, and also more reliability are the major advantages of BDFRM compared to BDFIM. The design complexity of its reluctance rotor, as well as flux patterns for indirect connection between the two windings mounted on the stator including power winding and control winding, have restricted the development of this machine technology. In the literature, there is not a comprehensive review of the research studies related to BDFRM. In this paper, the previous research studies are reviewed from different points of view, such as operation, design, control, transient model, dynamic model, power factor, Maximum Power Point Tracking (MPPT), and losses. It is revealed that the BDFRM is still evolving since the theoretical results have shown that this machine operates efficiently if it is well-designed

    Performance comparisons of doubly-fed machines

    Get PDF
    This research project aims at evaluating a conversion system based on the emerging Brushless Doubly Fed Reluctance Machine (BDFRM) through a comparative experimental study with a traditional and well established slip-ring counterpart, the Doubly Fed Induction Machine (DFIM). One of the main objectives is to establish whether this alternative machine is worthy of industrial consideration in variable speed applications with limited speed ranges (e.g. wind turbines, pump-like drives etc.) in terms of control, reliability, efficiency and power factor performance as major criteria. Such kind of work has not been reported in the open-literature to date and represents the main contribution of the project being undertaken. A conventional and widely used parameter-independent vector control (VC) scheme has been selected for the operation of both the machines using a shaft-position sensor. The VC algorithm has been simulated and implemented in real-time on state-of-the-art eZdsp development platform based on the TMS320F28335 Digital Signal Controller (DSC). The control code has been derived from a programme written in C++ using the corresponding compiler, the Code Composer Studio (CCS). Comprehensive computer simulations have been done in Matlab/Simulink using the parameters obtained by off-line testing of the DFIM and BDFRM prototypes, which have been built in the same stator frame for comparison purposes. The simulation results have been experimentally verified on two identical test rigs where a commercial 4-quadrant cage induction machine V/f drive has been used as a prime mover or load for either the DFIM or the BDFRM subject to their operating mode. The preliminary experimental results on two small-scale prototypes have shown that the BDFRM can achieve competitive performance to the similarly rated DFIM and as such should warrant further investigation and increasing interests of both academic and industrial communities as a potential large-scale wind generator or a pump drive

    Wind power applications of doubly-fed reluctance generators with parameter-free hysteresis control

    Get PDF
    The development and practical implementation aspects of a novel scheme for fast power control of the doubly-fed reluctance generator with a low-cost partially-rated converter, a promising brushless candidate for limited speed ranges of wind turbines, are presented in this paper. The proposed concept is derived from the fundamental dynamic analogies between the controllable and measurable properties of the machine: electro-magnetic torque and electrical power, and flux and reactive power. The algorithm is applied in a stationary reference frame without any knowledge of the machine parameters, including rotor angular position or velocity. It is then structurally simpler, easier to realize in real-time and more tolerant of the system operating uncertainties than model-based or proportional-integral control alternatives. Experimental results have demonstrated the excellent controller response for a variety of speed, load and/or power factor states of a custom-built generator prototype

    The use of doubly fed reluctance machines for large pumps and wind turbines

    Get PDF

    A new sensorless speed control scheme for doubly-fed reluctance generators

    Get PDF
    This paper presents the development and experimental validation of a novel angular velocity observer-based field-oriented control algorithm for a promising low-cost brushless doubly fed reluctance generator (BDFRG) in wind power applications. The BDFRG has been receiving increasing attention because of the use of partially rated power electronics, the high reliability of brushless design, and competitive performance to its popular slip-ring counterpart, the doubly fed induction generator. The controller viability has been demonstrated on a BDFRG laboratory test facility for emulation of variable speed and loading conditions of wind turbines or pump drives

    Super-twisting sliding mode control for brushless doubly fed reluctance generator based on wind energy conversion system

    Get PDF
    Introduction. Recently, wind power generation has grown at an alarming rate in the past decade and will continue to do so as power electronic technology continues to advance. Purpose. Super-twisting sliding mode control for brushless doubly-fed reluctance generator based on wind energy conversion system. Methods. This paper deals with the robust power control of a grid-connected brushless doubly-fed reluctance generator driven by the variable speed wind turbine using a variable structure control theory called sliding mode control. The traditional sliding mode approach produces an unpleasant chattering phenomenon that could harm the system. To eliminate chattering, it is necessary to employ a high-order sliding mode controller. The super-twisting algorithm is one type of nonlinear control presented in order to ensure the effectiveness of the control structure we tested these controllers in two different ways reference tracking, and robustness. Results. Simulation results using MATLAB/Simulink have demonstrated the effectiveness and robustness of the super-twisting sliding mode controller.Вступ. В останнє десятиліття виробництво вітрової енергії зростало загрозливими темпами і продовжуватиме зростати у міру розвитку технологій силової електроніки. Мета. Управління ковзним режимом суперскручування для реактивного безщіткового генератора з подвійним живленням на основі системи перетворення енергії вітру. Методи. У цій статті розглядається надійне керування потужністю підключеного до мережі безщіткового реактивного генератора з подвійним живленням, що приводиться в дію вітряною турбіною зі змінною швидкістю, з використанням теорії управління зі змінною структурою, яка називається керуванням в ковзному режимі. Традиційний підхід зі ковзним режимом створює неприємне явище вібрації, що може зашкодити системі. Для усунення вібрації необхідно використовувати регулятор ковзного режиму високого порядку. Алгоритм суперскручування - це один із типів нелінійного управління, представлений для забезпечення ефективності структури управління. Ми протестували ці контролери двома різними способами: відстеженням посилань та надійністю. Результати моделювання з використанням MATLAB/Simulink продемонстрували ефективність та надійність контролера ковзного режиму суперскручування

    Converter fault diagnosis and post-fault operation of a doubly-fed induction generator for a wind turbine

    Get PDF
    Wind energy has become one of the most important alternative energy resources because of the global warming crisis. Wind turbines are often erected off-shore because of favourable wind conditions, requiring lower towers than on-shore. The doubly-fed induction generator is one of the most widely used generators with wind turbines. In such a wind turbine the power converters are less robust than the generator and other mechanical parts. If any switch failure occurs in the converters, the wind turbine may be seriously damaged and have to stop. Therefore, converter health monitoring and fault diagnosis are important to improve system reliability. Moreover, to avoid shutting down the wind turbine, converter fault diagnosis may permit a change in control strategy and/or reconfigure the power converters to permit post-fault operation. This research focuses on switch fault diagnosis and post-fault operation for the converters of the doubly-fed induction generator. The effects of an open-switch fault and a short-circuit switch fault are analysed. Several existing open-switch fault diagnosis methods are examined but are found to be unsuitable for the doubly-fed induction generator. The causes of false alarms with these methods are investigated. A proposed diagnosis method, with false alarm suppression, has the fault detection capability equivalent to the best of the existing methods, but improves system reliability. After any open-switch fault is detected, reconfiguration to a four-switch topology is activated to avoid shutting down the system. Short-circuit switch faults are also investigated. Possible methods to deal with this fault are discussed and demonstrated in simulation. Operating the doubly-fed induction generator as a squirrel cage generator with aerodynamic power control of turbine blades is suggested if this fault occurs in the machine-side converter, while constant dc voltage control is suitable for a short-circuit switch fault in the grid-side converter.Wind energy has become one of the most important alternative energy resources because of the global warming crisis. Wind turbines are often erected off-shore because of favourable wind conditions, requiring lower towers than on-shore. The doubly-fed induction generator is one of the most widely used generators with wind turbines. In such a wind turbine the power converters are less robust than the generator and other mechanical parts. If any switch failure occurs in the converters, the wind turbine may be seriously damaged and have to stop. Therefore, converter health monitoring and fault diagnosis are important to improve system reliability. Moreover, to avoid shutting down the wind turbine, converter fault diagnosis may permit a change in control strategy and/or reconfigure the power converters to permit post-fault operation. This research focuses on switch fault diagnosis and post-fault operation for the converters of the doubly-fed induction generator. The effects of an open-switch fault and a short-circuit switch fault are analysed. Several existing open-switch fault diagnosis methods are examined but are found to be unsuitable for the doubly-fed induction generator. The causes of false alarms with these methods are investigated. A proposed diagnosis method, with false alarm suppression, has the fault detection capability equivalent to the best of the existing methods, but improves system reliability. After any open-switch fault is detected, reconfiguration to a four-switch topology is activated to avoid shutting down the system. Short-circuit switch faults are also investigated. Possible methods to deal with this fault are discussed and demonstrated in simulation. Operating the doubly-fed induction generator as a squirrel cage generator with aerodynamic power control of turbine blades is suggested if this fault occurs in the machine-side converter, while constant dc voltage control is suitable for a short-circuit switch fault in the grid-side converter

    Performance Enhancement of a Variable Speed Permanent Magnet Synchronous Generator Used for Renewable Energy Application

    Get PDF
    The paper aims to develop an improved control system to enhance the dynamics of a permanent magnet synchronous generator (PMSG) operating at varying speeds. The generator dynamics are evaluated based on lowing current, power, and torque ripples to validate the effectiveness of the proposed control system. The adopted controllers include the model predictive power control (MPPC), model predictive torque control (MPTC), and the designed predictive voltage control (PVC). MPPC seeks to regulate the active and reactive power, while MPTC regulates the torque and flux. MPPC and MPTC have several drawbacks, like high ripple, high load commutation, and using a weighting factor in their cost functions. The methodology of designed predictive voltage comes to eliminate these drawbacks by managing the direct voltage by utilizing the deadbeat and finite control set FCS principle, which uses a simple cost function without needing any weighting factor for equilibrium error issues. The results demonstrate several advantages of the proposed PVC technique, including faster dynamic response, simplified control structure, reduced ripples, lower current harmonics, and decreased computational requirements when compared to the MPPC and MPTC methods. Additionally, the study considers the integration of blade pitch angle and maximum power point tracking (MPPT) controls, which limit wind energy utilization when the generator speed exceeds its rated speed and maximize wind energy extraction during wind scarcity. In summary, the proposed PVC enhanced control system exhibits superior performance in terms of dynamic response, control simplicity, current quality, and computational efficiency when compared to alternative methods
    corecore