56 research outputs found

    Orienting polyhedral parts by pushing

    Get PDF
    A common task in automated manufacturing processes is to orient parts prior to assembly. We consider sensorless orientation of an asymmetric polyhedral part by a sequence of push actions, and show that is it possible to move any such part from an unknown initial orientation into a known final orientation if these actions are performed by a jaw consisting of two orthogonal planes. We also show how to compute an orienting sequence of push actions.We propose a three-dimensional generalization of conveyor belts with fences consisting of a sequence of tilted plates with curved tips; each of the plates contains a sequence of fences. We show that it is possible to compute a set-up of plates and fences for any given asymmetric polyhedral part such that the part gets oriented on its descent along plates and fences

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period

    Planning and control for microassembly of structures composed of stress-engineered MEMS microrobots

    Get PDF
    We present control strategies that implement planar microassembly using groups of stress-engineered MEMS microrobots (MicroStressBots) controlled through a single global control signal. The global control signal couples the motion of the devices, causing the system to be highly underactuated. In order for the robots to assemble into arbitrary planar shapes despite the high degree of underactuation, it is desirable that each robot be independently maneuverable (independently controllable). To achieve independent control, we fabricated robots that behave (move) differently from one another in response to the same global control signal. We harnessed this differentiation to develop assembly control strategies, where the assembly goal is a desired geometric shape that can be obtained by connecting the chassis of individual robots. We derived and experimentally tested assembly plans that command some of the robots to make progress toward the goal, while other robots are constrained to remain in small circular trajectories (orbits) until it is their turn to move into the goal shape. Our control strategies were tested on systems of fabricated MicroStressBots. The robots are 240–280 µm × 60 µm × 7–20 µm in size and move simultaneously within a single operating environment. We demonstrated the feasibility of our control scheme by accurately assembling five different types of planar microstructures

    Room Modal Equalisation with Electroacoustic Absorbers

    Get PDF
    The sound quality in a room is of fundamental importance for both recording and reproducing processes. Because of the room modes, the distributions in space and frequency of the sound field are largely altered. Excessive rise and decay times caused by the resonances might even mask some details at higher frequencies, and these irregularities may be heard as a coloration of the sound. To address this problem, passive absorbers are bulky and too inefficient to significantly improve the listening conditions. On the other hand, the active equalization methods may be complicated and costly, and the sound field might not be well controlled, because of the added sound energy in the room. Another approach is the active absorption, which consists in varying the impedance of a part of the enclosure boundaries, so as to balance the sound field thanks to the absorbed sound power into the active boundary elements. The thesis deals with the design and optimization of electroacoustic absorbers intended to specifically reduce the effect of the unwanted room modes. These active absorbers are closed box electrodynamic loudspeaker systems, whose acoustic impedance at the diaphragms is judiciously adjusted with passive or active components to maximize their absorption performance in the domain in which it is located. Several topologies merging sensor- and shunt-based methods are proposed resulting in an efficient and broadband sound absorption at low frequencies. A multiple degree-of-freedom target impedance that is assigned at the transducer diaphragms is then optimized to lower the modal decay times at best. The performance of the electroacoustic absorbers for the modal equalization is investigated in actual listening rooms, and their audible effect is subjectively evaluated. The overall combination of concepts and developments proposed in this thesis paves the way towards new active absorbers that may improve the listening experience at low frequencies in rooms

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary

    Novel Insights into Orbital Angular Momentum Beams: From Fundamentals, Devices to Applications

    Get PDF
    It is well-known by now that the angular momentum carried by elementary particles can be categorized as spin angular momentum (SAM) and orbital angular momentum (OAM). In the early 1900s, Poynting recognized that a particle, such as a photon, can carry SAM, which has only two possible states, i.e., clockwise and anticlockwise circular polarization states. However, only fairly recently, in 1992, Allen et al. discovered that photons with helical phase fronts can carry OAM, which has infinite orthogonal states. In the past two decades, the OAM-carrying beam, due to its unique features, has gained increasing interest from many different research communities, including physics, chemistry, and engineering. Its twisted phase front and intensity distribution have enabled a variety of applications, such as micromanipulation, laser beam machining, nonlinear matter interactions, imaging, sensing, quantum cryptography and classical communications. This book aims to explore novel insights of OAM beams. It focuses on state-of-the-art advances in fundamental theories, devices and applications, as well as future perspectives of OAM beams

    Interlocking structure design and assembly

    Get PDF
    Many objects in our life are not manufactured as whole rigid pieces. Instead, smaller components are made to be later assembled into larger structures. Chairs are assembled from wooden pieces, cabins are made of logs, and buildings are constructed from bricks. These components are commonly designed by many iterations of human thinking. In this report, we will look at a few problems related to interlocking components design and assembly. Given an atomic object, how can we design a package that holds the object firmly without a gap in-between? How many pieces should the package be partitioned into? How can we assemble/extract each piece? We will attack this problem by first looking at the lower bound on the number of pieces, then at the upper bound. Afterwards, we will propose a practical algorithm for designing these packages. We also explore a special kind of interlocking structure which has only one or a small number of movable pieces. For example, a burr puzzle. We will design a few blocks with joints whose combination can be assembled into almost any voxelized 3D model. Our blocks require very simple motions to be assembled, enabling robotic assembly. As proof of concept, we also develop a robot system to assemble the blocks. In some extreme conditions where construction components are small, controlling each component individually is impossible. We will discuss an option using global controls. These global controls can be from gravity or magnetic fields. We show that in some special cases where the small units form a rectangular matrix, rearrangement can be done in a small space following a technique similar to bubble sort algorithm

    Tunable Electroacoustic Resonators through Active Impedance Control of Loudspeakers

    Get PDF
    The current trend for multipurpose rooms requires enhanced acoustic treatments capable to meet ever more demanding specifications in terms of performance, compactness and versatility. The reason is the variety of activities to be hosted and the corresponding requirements in terms of acoustic quality which may be very different and even conflicting. In any process to improve listening comfort, the treatment of low-frequency sound is a major concern. The problem stems from the proven ineffectiveness of passive soundproofing solutions of the state of the art, or from their bulkiness that may be prohibitive. This thesis focuses on the analysis, design, realization and characterization of tunable electroacoustic resonators intended to specifically address this issue. This concept deals with loudspeakers, the acoustic impedance of which can be easily adjusted in a controlled fashion. Creating an electroacoustic resonator out of a loudspeaker is the result of an interdisciplinary effort. Such a challenging task combines conceptual tools, models, and applied solutions, drawing from the fields of audio engineering, control theory, and electrical engineering, both in the analog and digital domains. A unifying theory is introduced, covering different strategies from passive electrical shunt to active control of acoustic impedance in a single formalism. This research shows that achieving a desired acoustic impedance at the transducer diaphragm is equivalent to the implementation of a specific functional relationship between the electrical current and voltage across the transducer terminals, and vice versa. From a design perspective, the specific electrical load is tailored by using an internal model of the transducer. The result is an innovative model-based synthesis methodology where the active control of acoustic impedance is reformulated as an electrical impedance synthesis, thus removing the use of sensor. This concept opens new opportunities to improve listening spaces by providing efficient acoustic absorption at low frequencies. Experiments clearly show the benefits of the proposed methodology in a field where there is currently no competitive solution. It is believed that the technological advances resulting from the coupling of a loudspeaker with a synthetic load should pave the way to innovative techniques in noise control and, hopefully, stimulate research in related areas
    • …
    corecore