6 research outputs found

    Self-starting interior permanent magnet motor drive for electric submersible pumps

    Get PDF
    The interior permanent magnet (IPM) motor drive has evolved as the most energy efficient technology for modern motion control applications. Electric submersible pumps (ESPs) are electric motor driven fluid recovery systems. ESPs are widely used for producing oil and gas from deep downhole reservoirs. Standard ESPs are driven by classical squirrel cage induction motors (IMs) due to its self-starting capability from a balanced 3-phase ac excitation, ruggedness, simplicity, low cost and wide scale availability. Although there has been a tremendous growth in the design and development of highly efficient and reliable IPM motors for traction drive systems, application of the IPM motor technology in ESPs is still in its infancy due to challenges associated with the design and control of IPM motors. In this thesis, a new self-starting, efficient and reliable IPM motor drive technology is proposed for ESP systems to extend their efficiency, longevity and performance. This thesis investigates two different types of self-starting interior permanent magnet (IPM) motors: cage-equipped IPM motors known as line-start IPM motors and a new type of hybrid self-starting motors called hysteresis IPM motors. The limited synchronization capability of line-start IPM motors for high inertial loads is explained in this thesis. To overcome the starting and synchronization problems associated with line-start IPM motors, a new type of hybrid hysteresis IPM motor is proposed in this thesis. Equivalent circuit modeling and finite element analysis of hysteresis IPM motors are carried out in this thesis. A prototype 2.5 kW hysteresis IPM motor is constructed and experimentally tested in the laboratory. In order to limit the inrush current during starting, a stable soft starter has been designed, simulated and implemented for variable speed operations of the motor. The simulation and experimental results are presented and analyzed in this thesis. Self-starting IPM motors suffer from hunting induced torsional oscillations. Electric submersible pumps are vulnerable against sustained hunting and can experience premature failures. In this thesis, a novel stator current signature based diagnostic system for detection of torsional oscillations in IPM motor drives is proposed. The diagnostic system is non-intrusive, fast and suitable for remote condition monitoring of an ESP drive system. Finally, a position sensorless control technique is developed for an IPM motor drive operated from an offshore power supply. The proposed technique can reliably start and stabilize an IPM motor using a back-emf estimation based sensorless controller. The efficacy of the developed sensorless control technique is investigated for a prototype 3-phase, 6-pole, 480V, 10-HP submersible IPM motor drive. In summary, this thesis carried out modeling, analysis and control of different types of self-starting IPM motors to assess their viability for ESP drive systems. Different designs of self-starting IPM motors are presented in this thesis. In future, a fully scalable self-starting IPM motor drive will be designed and manufactured that can meet the industrial demands for high power, highly reliable and super-efficient ESP systems

    Control of synchronous motor drives with an LC filter

    Get PDF
    Electric motors can experience voltage stress over the motor terminals due to the short rise time of the voltage pulse at the inverter output and the impedance mismatch between the lead cables and the motor. This overvoltage degrades the motor insulation, thus reducing the motor lifespan. The problems can be avoided by using a sinusoidal LC filter in the inverter output, limiting the overvoltage and dampening high-order harmonics. However, the existing control methods for LC-filtered synchronous motors are infeasible for plug-and-play drives, in which the motor data or user input are not required. This is because the methods either contain several cascaded control loops, require cumbersome parameter tuning, are sensitive to parameter errors, or the range of operating speeds is limited. Nevertheless, recently developed observer-based volts-per-hertz control shows advantages through relatively low sensitivity to parameter errors, simplicity and generality of the control algorithm, and reliance on common control gains for all synchronous motor types. These attributes indicate that the observer-based volts-per-hertz control can be used for medium-performance drives ensuring robust and stable operation at a wide range of speeds. This thesis develops observer-based volts-per-hertz control for synchronous motor drives with an LC filter. The two designed methods are based on two different observer types (reduced-order and full-order) with two state feedback control laws. The methods are further linearized by means of small-signal linearization, the control strategies are simulated in Simulink, and experimental measurements validate the simulations. The measurement results show a satisfactory performance of the permanent magnet synchronous motor with both methods. However, the control performance of the synchronous reluctance motor is poor when the full-order observer is used. The thesis subsequently provides several suggestions for future work improvements

    Electrical Signature Analysis of Synchronous Motors Under Some Mechanical Anomalies

    Get PDF
    Electrical Signature Analysis (ESA) has been introduced for some time to investigate the electrical anomalies of electric machines, especially for induction motors. More recently hints of using such an approach to analyze mechanical anomalies have appeared in the literature. Among them, some articles cover synchronous motors usually being employed to improve the power factor, drive green vehicles and reciprocating compressors or pumps with higher efficiency. Similarly with induction motors, the common mechanical anomalies of synchronous motor being analyzed using the ESA are air-gap eccentricity and single point bearing defects. However torsional effects, which are usually induced by torsional vibration of rotors and by generalized roughness bearing defects, have seldom been investigated using the ESA. This work presents an analytical method for ESA of rotor torsional vibration and an experimentally demonstrated approach for ESA of generalized roughness bearing defects. The torsional vibration of a shaft assembly usually induces rotor speed fluctuations resulting from the excitations in the electromagnetic (EM) or load torque. Actually, there is strong coupling within the system which is dynamically dependent on the interactions between the electromagnetic air-gap torque of the synchronous machine and the rotordynamics of the rotor shaft assembly. Typically this problem is solved as a one-way coupling by the unidirectional load transfer method, which is based on predetermined or assumed EM or load profile. It ignores the two-way interactions, especially during a start-up transient. In this work, a coupled equivalent circuit method is applied to reflect this coupling, and the simulation results show the significance of the proposed method by the practical case study of Electric Submersible Pump (ESP) system. The generalized roughness bearing anomaly is linked to load torque ripples which can cause speed oscillations, while being related to current signature by phase modulation. Considering that the induced characteristic signature is usually subtle broadband changes in the current spectrum, this signature is easily affected by input power quality variations, machine manufacturing imperfections and the interaction of both. A signal segmentation technique is introduced to isolate the influence of these disturbances and improve the effectiveness of applying the ESA for this kind of bearing defects. Furthermore, an improved experimental procedure is employed to closely resemble naturally occurring degradation of bearing, while isolating the influence of shaft currents on the signature of bearing defects during the experiments. The results show that the proposed method is effective in analyzing the generalized roughness bearing anomaly in synchronous motors

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Друга міжнародна конференція зі сталого майбутнього: екологічні, технологічні, соціальні та економічні питання (ICSF 2021). Кривий Ріг, Україна, 19-21 травня 2021 року

    Get PDF
    Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021). Kryvyi Rih, Ukraine, May 19-21, 2021.Друга міжнародна конференція зі сталого майбутнього: екологічні, технологічні, соціальні та економічні питання (ICSF 2021). Кривий Ріг, Україна, 19-21 травня 2021 року

    Recent Development of Hybrid Renewable Energy Systems

    Get PDF
    Abstract: The use of renewable energies continues to increase. However, the energy obtained from renewable resources is variable over time. The amount of energy produced from the renewable energy sources (RES) over time depends on the meteorological conditions of the region chosen, the season, the relief, etc. So, variable power and nonguaranteed energy produced by renewable sources implies intermittence of the grid. The key lies in supply sources integrated to a hybrid system (HS)
    corecore