17 research outputs found

    Whole-Hand Robotic Manipulation with Rolling, Sliding, and Caging

    Get PDF
    Traditional manipulation planning and modeling relies on strong assumptions about contact. Specifically, it is common to assume that contacts are fixed and do not slide. This assumption ensures that objects are stably grasped during every step of the manipulation, to avoid ejection. However, this assumption limits achievable manipulation to the feasible motion of the closed-loop kinematic chains formed by the object and fingers. To improve manipulation capability, it has been shown that relaxing contact constraints and allowing sliding can enhance dexterity. But in order to safely manipulate with shifting contacts, other safeguards must be used to protect against ejection. “Caging manipulation,” in which the object is geometrically trapped by the fingers, can be employed to guarantee that an object never leaves the hand, regardless of constantly changing contact conditions. Mechanical compliance and underactuated joint coupling, or carefully chosen design parameters, can be used to passively create a caging grasp – protecting against accidental ejection – while simultaneously manipulating with all parts of the hand. And with passive ejection avoidance, hand control schemes can be made very simple, while still accomplishing manipulation. In place of complex control, better design can be used to improve manipulation capability—by making smart choices about parameters such as phalanx length, joint stiffness, joint coupling schemes, finger frictional properties, and actuator mode of operation. I will present an approach for modeling fully actuated and underactuated whole-hand-manipulation with shifting contacts, show results demonstrating the relationship between design parameters and manipulation metrics, and show how this can produce highly dexterous manipulators

    Flexible Object Manipulation

    Get PDF
    Flexible objects are a challenge to manipulate. Their motions are hard to predict, and the high number of degrees of freedom makes sensing, control, and planning difficult. Additionally, they have more complex friction and contact issues than rigid bodies, and they may stretch and compress. In this thesis, I explore two major types of flexible materials: cloth and string. For rigid bodies, one of the most basic problems in manipulation is the development of immobilizing grasps. The same problem exists for flexible objects. I have shown that a simple polygonal piece of cloth can be fully immobilized by grasping all convex vertices and no more than one third of the concave vertices. I also explored simple manipulation methods that make use of gravity to reduce the number of fingers necessary for grasping. I have built a system for folding a T-shirt using a 4 DOF arm and a fixed-length iron bar which simulates two fingers. The main goal with string manipulation has been to tie knots without the use of any sensing. I have developed single-piece fixtures capable of tying knots in fishing line, solder, and wire, along with a more complex track-based system for autonomously tying a knot in steel wire. I have also developed a series of different fixtures that use compressed air to tie knots in string. Additionally, I have designed four-piece fixtures, which demonstrate a way to fully enclose a knot during the insertion process, while guaranteeing that extraction will always succeed

    Optimal grasping of soft objects with two robotic fingers

    Get PDF
    Robot grasping of deformable objects is an under-researched area. The difficulty comes from both mechanics and computation. First, deformation caused by the grasp operations changes object\u27s global geometry. Second, under deformation, an object\u27s contacts with the fingers grow from points into areas. Inside such a contact area, points that stick to the finger may later slide while points that slide may later stick. The torques exerted by the grasping fingers vary, in contrast with rigid body grasping whose torques are invariant under forces. In this thesis the object\u27s deformation and configuration of contact with fingers and the plane are tracked with finite element method(FEM) in an event-driven manner based on the contact displacements induced by the finger movements. The first part of the thesis analyzes two-finger squeeze grasping of deformable objects with a focus on two special classes: stable squeezes, which minimize the potential energy of the object among squeezes of the same depth, and pure squeezes, which eliminate all euclidean motions from the resulting deformations. Based on them an algorithm to characterize the best resistance by a grasp to an adversary finger is proposed which minimizes the work done by the grasping fingers. An optimization scheme is offered to handle the general case of frictional segment contact. Simulations and multiple experiments with a Barrett Hand on a rubber foam object are presented. The second part of this thesis describes a strategy for a two-finger robot hand to grasp and lift a 3D deformable object resting on the plane. Inspired by the human hand grasping, the strategy employs two rounded fingers to squeeze the object until a secure grasp is achieved under contact friction. And then lift it by translating upward to pick up the object. During the squeeze, a lift test is repeatedly conducted until it is successful based on the metrics and then trigger the upward translation. The gravitational force acting on the object is accounted for. Simulation is presented and shows some good promise for the sensorless grasping approach for deformable objects

    Exploitation of environmental constraints in human and robotic grasping

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We investigate the premise that robust grasping performance is enabled by exploiting constraints present in the environment. These constraints, leveraged through motion in contact, counteract uncertainty in state variables relevant to grasp success. Given this premise, grasping becomes a process of successive exploitation of environmental constraints, until a successful grasp has been established. We present support for this view found through the analysis of human grasp behavior and by showing robust robotic grasping based on constraint-exploiting grasp strategies. Furthermore, we show that it is possible to design robotic hands with inherent capabilities for the exploitation of environmental constraints

    Constructing Geometries for Group Control: Methods for Reasoning about Social Behaviors

    Get PDF
    Social behaviors in groups has been the subjects of hundreds of studies in a variety of research disciplines, including biology, physics, and robotics. In particular, flocking behaviors (commonly exhibited by birds and fish) are widely considered archetypical social behavioris and are due, in part, to the local interactions among the individuals and the environment. Despite a large number of investigations and a significant fraction of these providing algorithmic descriptions of flocking models, incompleteness and imprecision are readily identifiable in these algorithms, algorithmic input, and validation of the models. This has led to a limited understanding of the group level behaviors. Through two case-studies and a detailed meta-study of the literature, this dissertation shows that study of the individual behaviors are not adequate for understanding the behaviors displayed by the group. To highlight the limitations in only studying the individuals, this dissertation introduces a set of tools, that together, unify many of the existing microscopic approaches. A meta-study of the literature using these tools reveal that there are many small differences and ambiguities in the flocking scenarios being studied by different researchers and domains; unfortunately, these differences are of considerable significance. To address this issue, this dissertation exploits the predictable nature of the group’s behaviors in order to control the given group and thus hope to gain a fuller understanding of the collective. From the current literature, it is clear the environment is an important determinant in the resulting collective behaviors. This dissertation presents a method for reasoning about the effects the geometry of an environment has on individuals that exhibit collective behaviors in order to control them. This work formalizes the problem of controlling such groups by means of changing the environment in which the group operates and shows this problem to be PSPACE-Hard. A general methodology and basic framework is presented to address this problem. The proposed approach is general in that it is agnostic to the individual’s behaviors and geometric representations of the environment; allowing for a large variety in groups, desired behaviors, and environmental constraints to be considered. The results from both the simulations and over 80 robot trials show (1) the solution can automatically generate environments for reliably controlling various groups and (2) the solution can apply to other application domains; such as multi-agent formation planning for shepherding and piloting applications

    Interlocking structure design and assembly

    Get PDF
    Many objects in our life are not manufactured as whole rigid pieces. Instead, smaller components are made to be later assembled into larger structures. Chairs are assembled from wooden pieces, cabins are made of logs, and buildings are constructed from bricks. These components are commonly designed by many iterations of human thinking. In this report, we will look at a few problems related to interlocking components design and assembly. Given an atomic object, how can we design a package that holds the object firmly without a gap in-between? How many pieces should the package be partitioned into? How can we assemble/extract each piece? We will attack this problem by first looking at the lower bound on the number of pieces, then at the upper bound. Afterwards, we will propose a practical algorithm for designing these packages. We also explore a special kind of interlocking structure which has only one or a small number of movable pieces. For example, a burr puzzle. We will design a few blocks with joints whose combination can be assembled into almost any voxelized 3D model. Our blocks require very simple motions to be assembled, enabling robotic assembly. As proof of concept, we also develop a robot system to assemble the blocks. In some extreme conditions where construction components are small, controlling each component individually is impossible. We will discuss an option using global controls. These global controls can be from gravity or magnetic fields. We show that in some special cases where the small units form a rectangular matrix, rearrangement can be done in a small space following a technique similar to bubble sort algorithm

    A Reactive Planning Framework for Dexterous Robotic Manipulation

    Get PDF
    This thesis investigates a reactive motion planning and controller framework that enables robots to manipulate objects dexterously. We develop a robotic platform that can quickly and reliably replan actions based on sensed information. Robotic manipulation is subject to noise due to uncertainty in frictional contact information, and reactivity is key for robustness. The planning framework has been designed with generality in mind and naturally extends to a variety of robotic tasks, manipulators and sensors. This design is validated experimentally on an ABB IRB 14000 dual-arm industrial collaborative robot. In this research, we are interested in dexterous robot manipulation, where the key technology is to move an object from an initial location to a desired configuration. The robot makes use of a high resolution tactile sensor to monitor the progress of the task and drive the reactive behavior of the robot to counter mistakes or unaccounted environment conditions. The motion planning framework is integrated with a task planner that dictates the high-level manipulation behavior of the robot, as well as a low-level controller, that adapts robot motions based on measured tactile signaOutgoin
    corecore