284 research outputs found

    Cross-Saturation Effects in IPM Motors and Related Impact on Sensorless Control

    Get PDF
    Permanent-magnet-assisted synchronous reluctance motors are well suited to zero-speed sensorless control because of their inherently salient behavior. However, the cross-saturation effect can lead to large errors on the position estimate, which is based on the differential anisotropy. These errors are quantified in this paper as a function of the working point. The errors that are calculated are then found to be in good accordance with the purposely obtained experimental measurement

    Impact of cross-saturation in sensorless control of transverse-laminated synchronous reluctance motors

    Get PDF
    Synchronous reluctance (SyR) motors are well suited to a zero-speed sensorless control, because of their inherently salient behavior. However, the cross-saturation effect can lead to large errors on the position estimate, which is based on the differential anisotropy. These errors are quantified in the paper, as a function of the working point. The so-calculated errors are then found in good accordance with the purposely obtained experimental measurements. The impact of the amplitude of the carrier voltage is then pointed out, leading to a mixed (carrier injection plus electromotive force estimation) control scheme. Last, a scheme of this type is used, with a commercial transverse-laminated SyR motor. The robustness against cross-saturation is shown, in practice, and the obtained drive performance is pointed out proving to be effective for a general-purpose applicatio

    High-frequency issues using rotating voltage injections intended for position self-sensing

    Get PDF
    The rotor position is required in many control schemes in electrical drives. Replacing position sensors by machine self-sensing estimators increases reliability and reduces cost. Solutions based on tracking magnetic anisotropies through the monitoring of the incremental inductance variations are efficient at low-speed and standstill operations. This inductance can be estimated by measuring the response to the injection of high-frequency signals. In general however, the selection of the optimal frequency is not addressed thoroughly. In this paper, we propose discrete-time operations based on a rotating voltage injection at frequencies up to one third of the sampling frequency used by the digital controller. The impact on the rotation-drive, the computational requirement, the robustness and the effect of the resistance on the position estimation are analyzed regarding the signal frequency

    Sensorless Direct Flux Vector Control of Synchronous Reluctance Motors Including Standstill, MTPA and Flux Weakening

    Get PDF
    This paper proposes a sensorless direct flux vector control scheme for synchronous reluctance motor drives. Torque is controlled at constant switching frequency, via the closed loop regulation of the stator flux linkage vector and of the current component in quadrature with it, using the stator flux oriented reference frame. A hybrid flux and position observer combines back-electromotive force integration with pulsating voltage injection around zero speed. Around zero speed, the position observer takes advantage of injected pulsating voltage. Instead of the commonly used current demodulation, the position error feedback is extracted here at the output of the observer’s flux maps, thus resulting in immunity towards the cross-saturation position error. The Maximum Torque per Ampere (MTPA) strategy is used. A detailed analysis puts in evidence the key advantages and disadvantages related to the use of the MTPA in the sensorless control of the Synchronous Reluctance machine, for both the saliency based and the back-EMF based sensorless methods. Extensive experimental results are reported for a 2.2 kW synchronous reluctance motor prototype, showing the feasibility of the proposed method. These include speed response to step and sinusoidal load disturbances at standstill, up to 121% of rated torque, and speed response tests covering the flux weakening speed region

    Sensorless position estimation in fault-tolerant permanent magnet AC motor drives with redundancy.

    Get PDF
    Safety critical applications are heavily dependent on fault-tolerant motor drives being capable of continuing to operate satisfactorily under faults. This research utilizes a fault-tolerant PMAC motor drive with redundancy involving dual drives to provide parallel redundancy where each drive has electrically, magnetically, thermally and physically independent phases to improve its fault-tolerant capabilities. PMAC motor drives can offer high power and torque densities which are essential in high performance applications, for example, more-electric airplanes. In this thesis, two sensorless algorithms are proposed to estimate the rotor position in a fault-tolerant three-phase surface-mounted sinusoidal PMAC motor drive with redundancy under normal and faulted operating conditions. The key aims are to improve the reliability by eliminating the use of a position sensor which is one of major sources of failures, as well as by offering fault-tolerant position estimation. The algorithms utilize measurements of the winding currents and phase voltages, to compute flux linkage increments without integration, hence producing the predicted position values. Estimation errors due measurements are compensated for by a modified phase-locked loop technique which forces the predicted positions to track the flux linkage increments, finally generating the rotor position estimate. The fault-tolerant three-phase sensorless position estimation method utilizes the measured data from the three phase windings in each drive, consequently obtaining a total of two position estimates. However, the fault-tolerant two-phase sensorless position estimation method uses measurements from pairs of phases and produces three position estimates for each drive. Therefore, six position estimates are available in the dual drive system. In normal operation, all of these position estimates can be averaged to achieve a final rotor angle estimate in both schemes. Under faulted operating conditions, on the other hand, a final position estimate should be achieved by averaging position estimates obtained with measurements from healthy phases since unacceptable estimation errors can be created by making use of measured values from phases with failures. In order to validate the effectiveness of the proposed fault-tolerant sensorless position estimation schemes, the algorithms were tested using both simulated data and offline measured data from an experimental fault-tolerant PMAC motor drive system. In the healthy condition, both techniques presented good performance with acceptable accuracies under low and high steady-state speeds, starting from standstill and step load changes. In addition, they had robustness against parameter variations and measurement errors, as well as the ability to recover quickly from large incorrect initial position information. Under faulted operating conditions such as sensor failures, however, the two-phase sensorless method was more reliable than the threephase sensorless method since it could operate even with a faulty phase.Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 201

    Self-adaptive high-frequency injection based sensorless control for interior permanent magnet synchronous motor drives \u2020

    Get PDF
    Abstract: An auto-tuning and self-adaptation procedure for High Frequency Injection (HFI) based position and speed estimation algorithms in Interior Permanent Magnet Synchronous Motor (IPMSM) drives is proposed in this paper. Analytical developments show that, using conventional approaches, the dynamics of the high-frequency tracking loop varies with differential inductances, which in turn depend on the machine operating point. On-line estimation and adaptation of the small signal gain of the loop is proposed here, allowing accurate auto-tuning of the sensorless control scheme which does not rely on a priori knowledge of the machine parameters. On-line adaptation of Phase-Locked Loop (PLL) gains and of the injected voltage magnitude is also possible, leading to important advantages from the performance, loss and acoustic point of view. The theoretical basis of the method has been introduced first and the main concept demonstrated by means of simulations. Implementation has been carried out using the hardware of a commercial industrial drive and two Interior Permanent Magnet Synchronous Motors, namely a prototype and an off-the-shelf machine. Experimental tests demonstrate the feasibility and effectiveness of the proposal

    Self-Adaptive High-Frequency Injection Based Sensorless Control for Interior Permanent Magnet Synchronous Motor Drives

    Get PDF
    open5openKumar, Piyush; Bottesi, Omar; Calligaro, Sandro; Alberti, Luigi; Petrella, RobertoKumar, Piyush; Bottesi, Omar; Calligaro, Sandro; Alberti, Luigi; Petrella, Robert

    Sensorless Commissioning and Control of High Anisotropy Synchronous Motor Drives

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore