27 research outputs found

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Modelling and practical set-up to investigate the performance of permanent magnet synchronous motor through rotor position estimation at zero and low speeds

    Get PDF
    This thesis provides a study for the rotor position estimation in SM-PMSMs, particularly at zero and low speeds. The method for zero rotor speed is based on injection of three high frequency voltage pulses in the motor stator windings. Then, the voltage responses at the motor terminals are exploited to extract the rotor position. Two approaches, modelling and practical implementations, are presented. The obtained results have showed a verification of a high-resolution position estimation (a position estimation of 1 degree angle), a simplicity and cost effective implementation and a no need for current sensors is required to achieve the estimation process. It should be noticed that the implementation of rotor position estimation at zero speed is only attended when the rotor is at standstill or very low speed. Therefore, the motor driver is not expected to be active at this condition. Thereby, the zero speed estimation does not provide a robust torque control. In future, this should be taking into consideration to overcome this drawback and to make the estimator more reliable. At low speed running, the primary goal is to start spinning the under test motors, and then the rotor position estimation is achieved. The motor spinning is based on adopting a virtual injected signal to generate the voltage components, Vα and Vβ, of the space vector pulse width modulation technique. Then, generating the eight space vectors is conducted through storing the standard patterns of the six space vector sectors in a memory structure together with the timing sequences of each sector. The presented strategy of motor running includes a proposed motor speed control scheme, which is based on controlling the frequency of the power signal, at the inverter output, through controlling the timing period of execution the power delivery program. The thesis presents a proposed method to achieve the estimation goal depends on tracking the magnetic saliency on one motor line voltage. Thereby, the rotor position estimation The introduced proposed method, for rotor position estimation at zero speed, verifies the following contributions: - Presents a simple and cost effective zero speed rotor position estimator for the motor under test. - The aimed resolution in this thesis is an angle 1 degree. IV - Adopting solely the measuring of motor terminal voltages. Eliminating the detection of the rotor magnet polarity as a necessary technique for completing the position estimation. At low speed running, the following contributions are verified: - Rather than a real frequency signal, a virtual injected signal is adopted to generate the voltage components, Vα and Vβ of the space vector pulse width modulation technique. - The proposed method for generating the eight space vectors is based on storing the standard patterns of the six sectors in a memory structure together with the timing sequence. - The strategy of motor speed control is based on controlling the period of execution the power delivery program. - The strategy of low speed rotor position employs one motor line voltage from which the low speed estimation is achieved

    Sensorless Commissioning and Control of High Anisotropy Synchronous Motor Drives

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Control of 7-phase permanent magnet synchronous motor drive post three failures

    Get PDF
    The article is introducing a new control technique for the 7-phase permanent magnet synchronous motor (PMSM) drive to enhance its robustness against the failure of phases ‘a’ and ‘c’ in addition to the failure of the encoder occurring simultaneously. The article is firstly developing a new multi-dimension space vector pulse width modulation (SVPWM) technique as a part of the fault-tolerant control technique (FTC) to control the magnitudes and angles of the motor’s current after the failures of phases ‘a’ and ‘c’. Moreover, the paper is developing another FTC to obtain a sensorless operation of the 7-phase motor after the failure in the encoder while the phase ‘a’ and ‘c’ are faulted based on the tracking of the saturation saliency. Simulation results prove that the ripple in the speed post the three failures was maintained to be less than 10 rpm compared to 2 rpm when the 7-phase drive is running without faults. In addition to that, the results demonstrated that the motor responded to instant changes in speeds and loads with a dynamic response very close to that obtained when the 7-phase motor ran under healthy operating conditions

    Enhancement of Sensorless Control for Non-Sinusoidal Multiphase Drives-Part I: Operation in Medium and High-Speed Range

    Get PDF
    This two-part study proposes a new sensorless control strategy for non-sinusoidal multiphase permanent magnet synchronous machines (PMSMs), especially integrated motor drives (IMDs). Based on the Sliding Mode Observer (SMO), the proposed sensorless control strategy uses the signals (currents and voltages) of all fictitious machines of the multiphase PMSMs. It can estimate the high-accuracy rotor positions that are required in vector control. This proposed strategy is compared to the conventional sensorless control strategy that applies only current and voltage signals of the main fictitious machine, including the fundamental component of back electromotive force (back EMF) of non-sinusoidal multiphase PMSMs. Therefore, in order to choose an appropriate sensorless control strategy for the non-sinusoidal multiphase PMSMs, these two sensorless control strategies will be highlighted in terms of precision with respect to rotor position and speed estimation. Simulations and the experimental results obtained with a non-sinusoidal seven-phase PMSM will be shown to verify and compare the two sensorless control strategies. In this part of the study (part I), only sensorless control in the medium and high-speed range is considered. Sensorless control at the zero and low-speed range will be treated in the second part of this study (part II).Financement par le Projet C2EI - Hauts de Franc

    Dynamic Performance Analysis of a Five-Phase PMSM Drive Using Model Reference Adaptive System and Enhanced Sliding Mode Observer

    Get PDF
    This paper aims to evaluate the dynamic performance of a five-phase PMSM drive using two different observers: sliding mode (SMO) and model reference adaptive system (MRAS). The design of the vector control for the drive is firstly introduced in details to visualize the proper selection of speed and current controllers’ gains, then the construction of the two observers are presented. The stability check for the two observers are also presented and analyzed, and finally the evaluation results are presented to visualize the features of each sensorless technique and identify the advantages and shortages as well. The obtained results reveal that the de-signed SMO exhibits better performance and enhanced robustness compared with the MRAS under different operating conditions. This fact is approved through the obtained results considering a mismatch in the values of stator resistance and stator inductance as well. Large deviation in the values of estimated speed and rotor position are observed under MRAS, and this is also accompanied with high speed and torque oscillations

    Sensorless Passive Control Algorithms for Medium to High Power Synchronous Motor Drives

    Get PDF
    This study is focused on the definition of sensorless algorithms for Surface-Mounted Permanent Magnet Synchronous Motors (SM-PMSM) and Electrically Excited Synchronous Motors (EESM). Even if these types of motors are rather different from a constructive point of view, they have some common issues regarding sensorless drives. Indeed, SM-PMSMs, which are usually used for low-medium power applications, have a low rotor anisotropy, therefore it is complicated to use sensorless active methods (which are based on high-frequency voltage injection), due to the low signal to noise ratio. On the other hand, active methods on high-power EESM have the drawback of high torque ripple. For these reasons, both for SM-PMSM and EESM, it is interesting to define and use sensorless passive algorithms (i.e., based on observers and estimators). The drawback of such algorithms is that their performance deteriorates significantly in the low-speed region. The aim of this thesis is to define a robust sensorless passive algorithm that could work in a wide speed region and that could start the motor from standstill even with a high load torque. The initial objective of the work is to find, among the various algorithms proposed in the technical literature, the most promising one. For this purpose, four different algorithms are selected. They are chosen considering the most recent articles presented in the technical literature on high reputable journals. Since many improvements are proposed in the literature for the different algorithms, the most recent ones are candidates for being the ones with higher performance. Even if the experimental tests of the four different algorithms are shown in the literature, it is difficult to evaluate a priori which offers the best performance. As a matter of facts, for each algorithm different tests are carried out (e.g., different speed and torque profiles). In addition to that, motor sizing and features are different. Moreover, the test bench characteristics can significantly affect sensorless performance. As an example, inverter features and non-linearities (e.g., switching frequency, dead times, parasitic capacitance) and current measures (e.g., noise, linearity, bias) play a key role in the estimation of rotor position. The added value of this thesis is to perform a fair comparison of the four algorithms, performing the same tests with the same test bench. Additional tests are performed on the most performing algorithm. Even if this sensorless technique is already proposed in the technical literature, a methodology for observer gain tuning is not shown, which is proposed, instead, in this thesis. Moreover, the algorithm is enhanced by adding a novel management of direct axis current, which ensures the stability during fast transient from medium-high speed to low speed. The algorithm is tested with different test benches in order to verify the control effectiveness in various operating conditions. As a matter of facts, it is tested at first in the University of Genoa PETRA Lab on two different test benches. The first test bench is composed of two coupled motors, in which the braking motor could realize different torque profiles (linear torque, quadratic torque and constant torque), whereas in the second test bench the motor is coupled with an air compressor, which is a demanding load since high and irregular torque is applied at standstill. After the test at the University of Genoa, the algorithm is implemented in Phase Motion Control and Physis drive and tested on a six-meter diameter fan. Regarding the EESMs, for these type of motor is necessary to estimate the stator flux amplitude and angle. Indeed, the stator angle is usually used to perform the Park transformations in the FOC scheme and the stator flux amplitude is used to control the excitation current. In this study, the RFO is adapted for estimating the stator flux of an EESM. Regarding the control for EESM, it is tested on a simulative model for high-power motors provided by NIDEC ASI and tested on a small-scale test bench at the University of Genoa

    Advances in dual-three-phase permanent magnet synchronous machines and control techniques

    Get PDF
    Multiphase electrical machines are advantageous for many industrial applications that require a high power rating, smooth torque, power/torque sharing capability, and fault-tolerant capability, compared with conventional single three-phase electrical machines. Consequently, a significant number of studies of multiphase machines has been published in recent years. This paper presents an overview of the recent advances in multiphase permanent magnet synchronous machines (PMSMs) and drive control techniques, with a focus on dual-three-phase PMSMs. It includes an extensive overview of the machine topologies, as well as their modelling methods, pulse-width-modulation techniques, field-oriented control, direct torque control, model predictive control, sensorless control, and fault-tolerant control, together with the newest control strategies for suppressing current harmonics and torque ripples, as well as carrier phase shift techniques, all with worked examples

    A comparison of saliency based sensorless control techniques for a PM machine

    Get PDF
    This thesis analyzes saliency-based sensorless control methods for AC surface mounted permanent magnet machines (PMSM), because PMSMs have features that make them attractive for use in industrial drives: small size, high efficiency, low maintenance, high dynamics, and high power density. The thesis focuses on four different HF injection sensorless methods, which utilize resistance and inductance based saliencies for position estimation: the measurement axis method, the eddy current resistance based saliency tracking method, the eddy current inductance based saliency tracking method, and the PWM switching frequency injection method. The emphasis is in the comparison of the four HF saliency tracking methods under various conditions such as steady state, load impact, speed reversal, and zero and low speed operation. The amplitude and frequency of the injection signals are also compared to choose the best HF injection signal for the four saliency tracking methods. The best sensorless control method using eddy current resistance based saliency is introduced and the experimental results confirm the expected advantages for this sensorless application. This thesis also describes the development and enhancement of current derivative measurement for saliency tracking methods, which uses the stator current transient response to the voltage vectors contained in the fundamental PWM sequence. Due to the HF switching oscillations caused by the switching of the IGBT and parasitic capacitance, the accuracy of the current measurement is reduced and requires a minimum vector time of approximately 6µs. A signal processing algorithm is proposed which uses current samples during the high frequency current oscillations, and can potentially reduce this minimum pulse time
    corecore