23 research outputs found

    Designing smart garments for rehabilitation

    Get PDF

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning

    Novel methodologies and technologies for the multiscale and multimodal study of Autism Spectrum Disorders (ASDs)

    Get PDF
    The aim of this PhD thesis was the development of novel bioengineering tools and methodologies that provide a support in the study of ASDs. ASDs are very heterogeneous disturbs and their abnormalities are present both at local and global level. For this reason a multimodal and multiscale approach was followed. The analysis of microstructure was executed on single Purkinje neurons in culture and on organotypic slices extracted from cerebella of GFP wild-type mice and animal models of ASDs. A methodology for the non-invasive imaging of neurons during their growth was set up and a software called NEMO (NEuron MOrphological analysis tool) for the automatic analysis of morphology and connectivity was developed. Microstructure properties can be inferred also in vivo through the quite recent technique of Diffusion Tensor Imaging (DTI). DTI studies in ASDs are based on the hypothesis that the disorder involves aberrant brain connectivity and disruption of white matter tracts between regions implicated in social functioning. In this study DTI was used to investigate structural abnormalities in the white matter structure of young children with ASDs. Moreover the neurostructural bases of echolalia were investigated. The functionality of the brain was analyzed through Functional Magnetic Resonance Imaging (fMRI) using a novel task based on face processing of human, android and robotic faces. A case-control study was performed in order to study how the face processing network is altered in ASDs and how robots are differently processed in ASDs and control groups. Measurements characterizing physiology and behavior of ASD children were also collected using an innovative platform called FACE-T (FACE-Therapy). FACE-T consists of a specially equipped room in which the child, wearing unobtrusive devices for recording physiological and behavioral data as well as gaze information, can interact with an android (FACE, Facial Automaton for Conveying Emotions) and a therapist. The focus was on ECG, as from the analysis of power spectrum density of ECG it is possible to extract features related to the autonomic nervous system that is correlated with brain functionality. These studies give new insights in the study of ASDs exploring aspects not yet addressed. Moreover the methodologies and tools developed could help in the objective characterization of ASD subjects and in the definition of a personalized therapeutic protocol for each child

    Recent developments in textile based polymeric smart sensor for human health monitoring: A review

    Get PDF
    In the modern age, the most important and prevailing issue is the monitoring of human health. To address this, several devices have been developed and a need new materials investigated. The idea of textile-based smart sensors is emerging rapidly. In this regard, ICPs and ECPs have attracted the attention of researchers due to their mechanical adaptability to suit the characteristics of textile fabric. The lighter weight, stretchability and wearability, etc. are considered an advantage while selecting the material for developing sensors not only in health monitoring but also in biomedical, sports, and military fields. The idea behind wearable sensing devices is to enable easy integration of the sensor device into daily life routines. Such wearable sensors also have the potential for real time and online monitoring of human health and integrate with smart monitoring devices. The purpose of this review is to discuss the recent developments in smart monitoring sensors.Open Access funding for this article is provided by the Qatar National Library, Al Luqta Street, Al-Rayyan P.O Box 5825 Doha, Qatar” The authors acknowledge the funding received for this work from Higher Education Commission (HEC) Pakistan under the Technology Development Fund (TDF) for grant number TDF-03-103

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

    Get PDF
    This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective

    Low-Cost Sensors and Biological Signals

    Get PDF
    Many sensors are currently available at prices lower than USD 100 and cover a wide range of biological signals: motion, muscle activity, heart rate, etc. Such low-cost sensors have metrological features allowing them to be used in everyday life and clinical applications, where gold-standard material is both too expensive and time-consuming to be used. The selected papers present current applications of low-cost sensors in domains such as physiotherapy, rehabilitation, and affective technologies. The results cover various aspects of low-cost sensor technology from hardware design to software optimization
    corecore