20 research outputs found

    Development of Fuzzy Applications for High Performance Induction Motor Drive

    Get PDF
    This chapter develops a sliding mode and fuzzy logic-based speed controller, which is named adaptive fuzzy sliding-mode controller (AFSMC) for an indirect field-oriented control (IFOC) of an induction motor (IM) drive. Essentially, the boundary layer approach is the most popular method to reduce the chattering phenomena, which leads to trade-off between control performances, and chattering elimination for uncertain nonlinear systems. For the proposed AFSMC, a fuzzy system is assigned as the reaching control part of the fuzzy sliding-mode controller so that it improves the control performances and eliminates the chattering completely despite large and small uncertainties in the system. A nonlinear adaptive law is also implemented to adjust the control gain with uncertainties of the system. The adaptive law is developed in the sense of Lyapunov stability theorem to minimize the control effort. The applied adaptive fuzzy controller acts like a saturation function in the thin boundary layer near the sliding surface to guarantee the stability of the system. The proposed AFSMC-based IM drive is implemented in real-time using digital signal processor (DSP) board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed AFSMC-based IM drive at different operating conditions such as load disturbance, parameter variations, etc

    Induction Motors

    Get PDF
    AC motors play a major role in modern industrial applications. Squirrel-cage induction motors (SCIMs) are probably the most frequently used when compared to other AC motors because of their low cost, ruggedness, and low maintenance. The material presented in this book is organized into four sections, covering the applications and structural properties of induction motors (IMs), fault detection and diagnostics, control strategies, and the more recently developed topology based on the multiphase (more than three phases) induction motors. This material should be of specific interest to engineers and researchers who are engaged in the modeling, design, and implementation of control algorithms applied to induction motors and, more generally, to readers broadly interested in nonlinear control, health condition monitoring, and fault diagnosis

    Sensorless control for limp-home mode of EV applications

    Get PDF
    PhD ThesisOver the past decade research into electric vehicles’ (EVs) safety, reliability and availability has become a hot topic and has attracted a lot of attention in the literature. Inevitably these key areas require further study and improvement. One of the challenges EVs face is speed/position sensor failure due to vibration and harsh environments. Wires connecting the sensor to the motor controller have a high likelihood of breakage. Loss of signals from the speed/position sensor will bring the EV to halt mode. Speed sensor failure at a busy roundabout or on a high speed motorway can have serious consequences and put the lives of drivers and passengers in great danger. This thesis aims to tackle the aforementioned issues by proposing several novel sensorless schemes based on Model Reference Adaptive Systems (MRAS) suitable for limp-home mode of EV applications. The estimated speed from these schemes is used for the rotor flux position estimation. The estimated rotor flux position is employed for sensorless torque-controlled drive (TCD) based on indirect rotor field oriented control (IRFOC). The capabilities of the proposed schemes have been evaluated and compared to the conventional back-Electromotive Force MRAS (back-EMF MRAS) scheme using simulation environment and a test bench setup. The new schemes have also been tested on electric golf buggies. The results presented for the proposed schemes show that utilising these schemes provide a reliable and smooth sensorless operation during vehicle test-drive starting from standstill and over a wide range of speeds, including the field weakening region. Employing these new schemes for sensorless TCD in limp-home mode of EV applications increases safety, reliability and availability of EVs

    Lyapunov based reference model of tension control in a continuous strip processing line with multi-motor drive

    Get PDF
    The article describes design and experimental verification of a new control structure with reference model for a multi-motor drive of a continuous technological line in which the motors are mutually mechanically coupled through processed material. Its principle consists in creating an additional information by introducing a new suitable state variable into the system. This helps to achieve a zero steady-state control deviation of the tension in the strip. Afterwards, the tension controller is designed to ensure asymptotic stability of the extended system by applying the second Lyapunov method. The realized experimental measurements performed on a continuous line laboratory model confirm the advantages and correctness of the proposed control structure: it is simple, stable, robust against changes of parameters, invariant to operating disturbances and ensures a high-quality dynamics of the controlled system prescribed by the reference model. To demonstrate effectiveness of the design, the performance of the controller was compared with properties of a standard Proportional Integral Derivative/Proportional Integral (PID/PI) controller designed in frequency domain

    Sensorless control of surface mounted permanent magnet machine using fundamental PWM excitation

    Get PDF
    This thesis describes the development of a sensorless control method for a surface mounted permanent magnet synchronous machine drive system. The saturation saliency in the machine is tracked from the stator current transient response to the fundamental space vector PWM (pulse width modulation) excitation. The rotor position and speed signals are obtained from measurements of the stator current derivative during the voltage vectors contained in the normal fundamental PWM sequence. In principle, this scheme can work over a wide speed range. However, the accuracy of the current derivative-measurements made during narrow voltage vectors reduces. This is because high frequency current oscillations exist after each vector switching instant, and these take a finite time to die down. Therefore, in this thesis, vector extension and compensation schemes are proposed which ensure correct current derivative measurements are made, even during narrow voltage vectors, so that any induced additional current distortion is kept to a minimum. The causes of the high frequency switching oscillations in the AC drive system are investigated and several approaches are developed to reduce the impact of these oscillations. These include the development of a novel modification to the IGBT gate drive circuit to reduce the requirement for PWM vector extension. Further improvements are made by modifications to the current derivative sensor design together with their associated signal processing circuits. In order to eliminate other harmonic disturbances and the high frequency noise appearing in the estimated position signals, an adaptive disturbance identifier and a tracking observer are incorporated to improve the position and speed signals. Experimental results show that the final sensorless control system can achieve excellent speed and position control performance

    Model-based powertrain design and control system development for the ideal all-wheel drive electric vehicle

    Get PDF
    The transfer case based all-wheel drive electric vehicle (TCAWDEV) and dual-axle AWDEV have been investigated to balance concerns about energy consumption, drivability and stability of vehicles. However, the mentioned powertrain architectures have the torque windup issue or the wheel skidding issue. The torque windup is an inherent issue of mechanical linked all-wheel drive systems. The hydraulic motor-based or the electric motor-based ideal all-wheel drive powertrain can provide feasible solutions to the mentioned issues. An ideal AWDEV (IAWDEV) powertrain architecture and its control schemes were proposed by this research; the architecture has four independent driving motors in powertrain. The IAWDEV gives more control freedoms to implement active torque controls and traction mode controls. In essence, this research came up with the distributed powertrain concept, and developed control schemes of the distributed powertrain to replace the transfer case and differential devices. The study investigated the dual-loop motor control, the hybrid sliding mode control (HSMC) and the neural network predictive control to reduce energy consumption and achieve better drivability and stability by optimizing the torque allocation of each dependent wheel. The mentioned control schemes were respectively developed for the anti-slip, differential and yaw stability functionalities of the IAWDEV powertrain. This study also investigated the sizing method that the battery capacity was estimated by using cruise performance at 3% road grade. In addition, the model-based verification was employed to evaluate the proposed powertrain design and control schemes. The verification shows that the design and controls can fulfill drivability requirements and minimize the existing issues, including torque windup and chattering of the slipping wheel. In addition, the verification shows that the IAWDEV can harvest around two times more energy while the vehicle is running on slippery roads than the TCAWDEV and the dual-axle AWDEV; the traction control can achieve better drivability and lower energy consumption than mentioned powertrains; the mode control can reduce 3% of battery charge depleting during the highway driving test. It also provides compelling evidences that the functionalities achieved by complicated and costly mechanical devices can be carried out by control schemes of the IAWDEV; the active torque controls can solve the inherent issues of mechanical linked powertrains; the sizing method is credible to estimate the operation envelop of powertrain components, even though there is some controllable over-sizing

    Performance of Induction Machines

    Get PDF
    Induction machines are one of the most important technical applications for both the industrial world and private use. Since their invention (achievements of Galileo Ferraris, Nikola Tesla, and Michal Doliwo-Dobrowolski), they have been widely used in different electrical drives and as generators, thanks to their features such as reliability, durability, low price, high efficiency, and resistance to failure. The methods for designing and using induction machines are similar to the methods used in other electric machines but have their own specificity. Many issues discussed here are based on the fundamental achievements of authors such as Nasar, Boldea, Yamamura, Tegopoulos, and Kriezis, who laid the foundations for the development of induction machines, which are still relevant today. The control algorithms are based on the achievements of Blaschke (field vector-oriented control) and Depenbrock or Takahashi (direct torque control), who created standards for the control of induction machines. Today’s induction machines must meet very stringent requirements of reliability, high efficiency, and performance. Thanks to the application of highly efficient numerical algorithms, it is possible to design induction machines faster and at a lower cost. At the same time, progress in materials science and technology enables the development of new machine topologies. The main objective of this book is to contribute to the development of induction machines in all areas of their applications

    Advanced Knowledge Application in Practice

    Get PDF
    The integration and interdependency of the world economy leads towards the creation of a global market that offers more opportunities, but is also more complex and competitive than ever before. Therefore widespread research activity is necessary if one is to remain successful on the market. This book is the result of research and development activities from a number of researchers worldwide, covering concrete fields of research

    Advances in Computer Science and Engineering

    Get PDF
    The book Advances in Computer Science and Engineering constitutes the revised selection of 23 chapters written by scientists and researchers from all over the world. The chapters cover topics in the scientific fields of Applied Computing Techniques, Innovations in Mechanical Engineering, Electrical Engineering and Applications and Advances in Applied Modeling
    corecore