168 research outputs found

    Smart hands for the EVA retriever

    Get PDF
    Dexterous, robotic hands are required for the extravehicular activity retriever (EVAR) system being developed by the NASA Johnson Space Center (JSC). These hands, as part of the EVAR system, must be able to grasp objects autonomously and securely which inadvertently separate from the Space Station. Development of the required hands was initiated in 1987. Outlined here are the hand development activities, including design considerations, progress to date, and future plans. Several types of dexterous hands that were evaluated, along with a proximity-sensing capability that was developed to initiate a reflexive, adaptive grasp, are described. The evaluations resulted in the design and fabrication of a 6-degree-of-freedom (DOF) hand that has two fingers and a thumb arranged in an anthropomorphic configuration. Finger joint force and position sensors are included in the design, as well as infrared proximity sensors which allow initiation of the grasp sequence when an object is detected within the grasp envelope

    An intelligent, free-flying robot

    Get PDF
    The ground based demonstration of the extensive extravehicular activity (EVA) Retriever, a voice-supervised, intelligent, free flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out; (2) searches for and acquires the target; (3) plans and executes a rendezvous while continuously tracking the target; (4) avoids stationary and moving obstacles; (5) reaches for and grapples the target; (6) returns to transfer the object; and (7) returns to base

    A Methodology for the Design of Robotic Hands with Multiple Fingers

    Get PDF
    This paper presents a methodology that has been applied for a design process of anthropomorphic hands with multiple fingers. Biomechanical characteristics of human hand have been analysed so that ergonomic and anthropometric aspects have been used as fundamental references for obtaining grasping mechanisms. A kinematic analysis has been proposed to define the requirements for designing grasping functions. Selection of materials and actuators has been discussed too. This topic has been based on previous experiences with prototypes that have been developed at the Laboratory of Robotics and Mechatronics (LARM) of the University of Cassino. An example of the application of the proposed method has been presented for the design of a first prototype of LARM Hand

    All the Feels: A dexterous hand with large area sensing

    Full text link
    High cost and lack of reliability has precluded the widespread adoption of dexterous hands in robotics. Furthermore, the lack of a viable tactile sensor capable of sensing over the entire area of the hand impedes the rich, low-level feedback that would improve learning of dexterous manipulation skills. This paper introduces an inexpensive, modular, robust, and scalable platform - the DManus- aimed at resolving these challenges while satisfying the large-scale data collection capabilities demanded by deep robot learning paradigms. Studies on human manipulation point to the criticality of low-level tactile feedback in performing everyday dexterous tasks. The DManus comes with ReSkin sensing on the entire surface of the palm as well as the fingertips. We demonstrate effectiveness of the fully integrated system in a tactile aware task - bin picking and sorting. Code, documentation, design files, detailed assembly instructions, trained models, task videos, and all supplementary materials required to recreate the setup can be found on http://roboticsbenchmarks.org/platforms/dmanusComment: 6 pages + references and appendix, 7 figures. Submitted to ICRA 202

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    Get PDF
    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested

    Proceedings of the NASA Conference on Space Telerobotics, volume 5

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center

    Dexterous actuation

    Get PDF
    Methods that have been developed for actuation system evaluation are normally generic, and primarily intended to facilitate actuator selection. Here, we address specifically those engineering devices that exhibit multiple-degree-of-freedom motions under space and weight constraints, and focus on the evaluation of the total actuation solution. We suggest a new measure that we provisionally call ‘Actuation Dexterity’, which interrogates the effectiveness of this total solution and serves as a design support tool. The new concept is developed in the context of artificial hands, and the approach is based on the review and analysis of thirty-six different artificial hand projects described in the literature. We have identified forty-eight unique evaluation criteria that are relevant to the actuation of devices of this type, and have devised a scoring method that permits the quantification of the actuation dexterity of a given device. We have tested this approach by evaluating and quantifying the actuation dexterity of five different artificial hands from the literature. Finally, we discuss the implications of this approach to the design process, and the portability of the approach between different device types.peer-reviewe

    TRACS: An Experimental Multiagent Robotic System

    Get PDF
    TRACS (Two Robotic Arm Coordination System), developed at the GRASP Laboratory at University of Pennsylvania, is an experimental system for studying dynamically coordinated control of multiple robotic manipulators. The systems is used to investigate such issues as the design of controller architectures, development of real-time control and coordination programming environments, integration of sensory devices, and implementation of dynamic coordination algorithms. The system consists two PUMA 250 robot arms and custom-made end effectors for manipulation and grasping. The controller is based an IBM PC/AT for its simplicity in I/O interface, ease of real-time programming, and availability of low-cost supporting devices. The Intel 286 in the PC is aided by a high speed AMD 29000 based floating point processor board. They are pipelined in such a way that the AMD 29000 processor performs real-time computations and the Intel 286 carries out I/O operations. The system is capable of implementing dynamic coordinated control of the two manipulators at 200 Hz. TRACS utilizes a C library called MO to provide the real-time programming environment. An effort has been made to separate hardware-dependent code from hardware-independent code. As such, MO is used in the laboratory to control different robots on different operating systems (MS-DOS and Unix) with minimal changes in hardware-dependent code such as reading encoders and setting joint torques. TRACS utilizes all off-the-shelf hardware components. Further, the adoption of MS-DOS instead of Unix or Unix-based real-time operating systems makes the real-time programming simple and minimizes the interrupt latencies. The feasibility of the system is demonstrated by a series of experiments of grasping and manipulating common objects by two manipulators
    • …
    corecore