363 research outputs found

    Multi-Bernoulli filter based sensor selection with limited sensing range for multi-target tracking

    Get PDF
    In this paper, we consider a sensor network with limited sensing range and present a sensor selection algorithm for multi-target tracking problem. The proposed algorithm is based on the multi-Bernoulli filtering and a collection of sub-selection problems for individual target. A sub-selection problem for each target is investigated under the framework of partially observed Markov decision process. Each sub-selection problem is solved using a combination of information theoretic method and limited sensing range. Numerical studies validate the effectiveness of our method for multi-target tracking scenario in a sensor network

    Estimation and control of multi-object systems with high-fidenlity sensor models: A labelled random finite set approach

    Get PDF
    Principled and novel multi-object tracking algorithms are proposed, that have the ability to optimally process realistic sensor data, by accommodating complex observational phenomena such as merged measurements and extended targets. Additionally, a sensor control scheme based on a tractable, information theoretic objective is proposed, the goal of which is to optimise tracking performance in multi-object scenarios. The concept of labelled random finite sets is adopted in the development of these new techniques

    Optical based statistical space objects tracking for catalogue maintenance

    Get PDF
    The number of space objects has grown substantially in the past decades due to new launches, regular mission activities, and breakup events. This has significantly affected the space environment and the development of the space industry. To ensure safe operation of space assets, Space Situational Awareness (SSA) has attracted considerable attention in recent years. One primary strategy in SSA is to establish and maintain a Space Object Catalogue (SOC) to provide timely updated data for SSA applications, e.g., conjunction analysis, collision avoidance manoeuvring. This thesis investigates three techniques for SOC maintenance, namely the tracklet association method for initial orbit determination, the multi-target tracking method for the refinement of orbital state estimation, and multi-sensor tasking method for the optimisation of sensor resources. Generally speaking, due to the limited number of optical sensors used to track the large population of space objects, the obtained observational arcs for many targets are very short. Such short arcs, which contain a small number of angular observations, are referred as tracklets. Given such limited data, typical orbit determination methods, e.g., Laplace, Gaussian, Double-R methods, may fail to produce a valid orbital solution. By contrast, tracklet association methods compare and correlate multiple tracklets across time, and following successful association, a reliable initial orbital state can be further determined for SOC maintenance. This thesis proposes an improved initial value problem optimisation method for accurate and efficient tracklet association, and a common ellipse method to distinguish false associations of tracklets from objects in the same constellation. The proposed methods are validated using real optical data collected from the Mount Stromlo Observatory, Canberra, Australia. Furthermore, another challenging task in SSA is to track multiple objects for the maintenance of a catalog. The Bayesian multi-target tracking filter addresses this issue by associating measurements to initially known or newly detected targets and simultaneously estimating the timevarying number of targets and their orbital states. In order to achieve efficient tracking of the new space objects, a novel birth model using the Boundary Value Problem (BVP) approach is proposed. The proposed BVP birth model is implemented in the Labelled Multi-Bernoulli (LMB) filter, which is an efficient multi-target tracker developed based on the Random Finite Set (RFS) theory, for improved computational efficiency of new space object tracking. Simulation results indicate that the computational efficiency of the proposed method significantly outperforms the state-of-the-art methods. Finally, as limited sensors are available for SOC maintenance, an appropriate sensor tasking scheme is essential for the optimisation of sensor resources. The optimal sensor tasking command allocates multiple sensors to take the best action and produce useful measurements for more accurate orbital state estimation. In this thesis, an analytical form is derived for the Rényi divergence of LMB RFS in which each target state density is a single Gaussian component. The obtained analytical Rényi divergence is formulated as a reward function for multi-sensor tasking, which improves the computational efficiency, especially for large-scale space object tracking. In addition, this thesis further investigates the benefits of using the analytical Rényi  divergence and various space-based and ground-based sensor networks for accurate tracking of objects in geosynchronous Earth orbit

    Sensor optimization in smart insoles for post-stroke gait asymmetries using total variation and L1 distances

    Get PDF
    By deploying pressure sensors on insoles, the forces exerted by the different parts of the foot when performing tasks standing up can be captured. The number and location of sensors to use are important factors in order to enhance the accuracy of parameters used in assessment while minimizing the cost of the device by reducing the number of deployed sensors. Selecting the best locations and the required number of sensors depends on the application and the features that we want to assess. In this paper, we present a computational process to select the optimal set of sensors to characterize gait asymmetries and plantar pressure patterns for stroke survivors based upon the total variation and L1 distances. The proposed mechanism is ecologically validated in a real environment with 14 stroke survivors and 14 control users. The number of sensors is reduced to 4, minimizing the cost of the device both for commercial users and companies and enhancing the cost to benefit ratio for its uptake from a national healthcare system. The results show that the sensors that better represent the gait asymmetries for healthy controls are the sensors under the big toe and midfoot and the sensors in the forefoot and midfoot for stroke survivors. The results also show that all four regions of the foot (toes, forefoot, midfoot, and heel) play an important role for plantar pressure pattern reconstruction for stroke survivors, while the heel and forefoot region are more prominent for healthy controls
    corecore