3,000 research outputs found

    Information Structure Design in Team Decision Problems

    Full text link
    We consider a problem of information structure design in team decision problems and team games. We propose simple, scalable greedy algorithms for adding a set of extra information links to optimize team performance and resilience to non-cooperative and adversarial agents. We show via a simple counterexample that the set function mapping additional information links to team performance is in general not supermodular. Although this implies that the greedy algorithm is not accompanied by worst-case performance guarantees, we illustrate through numerical experiments that it can produce effective and often optimal or near optimal information structure modifications

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Online Distributed Sensor Selection

    Full text link
    A key problem in sensor networks is to decide which sensors to query when, in order to obtain the most useful information (e.g., for performing accurate prediction), subject to constraints (e.g., on power and bandwidth). In many applications the utility function is not known a priori, must be learned from data, and can even change over time. Furthermore for large sensor networks solving a centralized optimization problem to select sensors is not feasible, and thus we seek a fully distributed solution. In this paper, we present Distributed Online Greedy (DOG), an efficient, distributed algorithm for repeatedly selecting sensors online, only receiving feedback about the utility of the selected sensors. We prove very strong theoretical no-regret guarantees that apply whenever the (unknown) utility function satisfies a natural diminishing returns property called submodularity. Our algorithm has extremely low communication requirements, and scales well to large sensor deployments. We extend DOG to allow observation-dependent sensor selection. We empirically demonstrate the effectiveness of our algorithm on several real-world sensing tasks

    Scaling Machine Learning Systems using Domain Adaptation

    Get PDF
    Machine-learned components, particularly those trained using deep learning methods, are becoming integral parts of modern intelligent systems, with applications including computer vision, speech processing, natural language processing and human activity recognition. As these machine learning (ML) systems scale to real-world settings, they will encounter scenarios where the distribution of the data in the real-world (i.e., the target domain) is different from the data on which they were trained (i.e., the source domain). This phenomenon, known as domain shift, can significantly degrade the performance of ML systems in new deployment scenarios. In this thesis, we study the impact of domain shift caused by variations in system hardware, software and user preferences on the performance of ML systems. After quantifying the performance degradation of ML models in target domains due to the various types of domain shift, we propose unsupervised domain adaptation (uDA) algorithms that leverage unlabeled data collected in the target domain to improve the performance of the ML model. At its core, this thesis argues for the need to develop uDA solutions while adhering to practical scenarios in which ML systems will scale. More specifically, we consider four scenarios: (i) opaque ML systems, wherein parameters of the source prediction model are not made accessible in the target domain, (ii) transparent ML systems, wherein source model parameters are accessible and can be modified in the target domain, (iii) ML systems where source and target domains do not have identical label spaces, and (iv) distributed ML systems, wherein the source and target domains are geographically distributed, their datasets are private and cannot be exchanged using adaptation. We study the unique challenges and constraints of each scenario and propose novel uDA algorithms that outperform state-of-the-art baselines
    corecore