1,204 research outputs found

    Optimal Sensor Placement with Adaptive Constraints for Nuclear Digital Twins

    Full text link
    Given harsh operating conditions and physical constraints in reactors, nuclear applications cannot afford to equip the physical asset with a large array of sensors. Therefore, it is crucial to carefully determine the placement of sensors within the given spatial limitations, enabling the reconstruction of reactor flow fields and the creation of nuclear digital twins. Various design considerations are imposed, such as predetermined sensor locations, restricted areas within the reactor, a fixed number of sensors allocated to a specific region, or sensors positioned at a designated distance from one another. We develop a data-driven technique that integrates constraints into an optimization procedure for sensor placement, aiming to minimize reconstruction errors. Our approach employs a greedy algorithm that can optimize sensor locations on a grid, adhering to user-defined constraints. We demonstrate the near optimality of our algorithm by computing all possible configurations for selecting a certain number of sensors for a randomly generated state space system. In this work, the algorithm is demonstrated on the Out-of-Pile Testing and Instrumentation Transient Water Irradiation System (OPTI-TWIST) prototype vessel, which is electrically heated to mimic the neutronics effect of the Transient Reactor Test facility (TREAT) at Idaho National Laboratory (INL). The resulting sensor-based reconstruction of temperature within the OPTI-TWIST minimizes error, provides probabilistic bounds for noise-induced uncertainty and will finally be used for communication between the digital twin and experimental facility

    Sensor placement for field reconstruction in rotating electrical machines

    Get PDF
    A method is proposed to place sensors in an electrical machine in order to be able to reconstruct the magnetic field distribution. This method is based on the Empirical Interpolation Method combined with the Maxvol technique. The results applied on a surface mounted permanent magnet machine at no load show that the field distribution can be accurately reconstructed even when the sensor location is imposed in the airgap of the rotating machine.This work has been carried out within the framework of CE2I project. CE2I is co-financed by European Union with the financial support of European Regional Development Fund (ERDF), French State and the French Region of Hauts-de-France

    An Integrated Approach to Performance Monitoring and Fault Diagnosis of Nuclear Power Systems

    Get PDF
    In this dissertation an integrated framework of process performance monitoring and fault diagnosis was developed for nuclear power systems using robust data driven model based methods, which comprises thermal hydraulic simulation, data driven modeling, identification of model uncertainty, and robust residual generator design for fault detection and isolation. In the applications to nuclear power systems, on the one hand, historical data are often not able to characterize the relationships among process variables because operating setpoints may change and thermal fluid components such as steam generators and heat exchangers may experience degradation. On the other hand, first-principle models always have uncertainty and are often too complicated in terms of model structure to design residual generators for fault diagnosis. Therefore, a realistic fault diagnosis method needs to combine the strength of first principle models in modeling a wide range of anticipated operation conditions and the strength of data driven modeling in feature extraction. In the developed robust data driven model-based approach, the changes in operation conditions are simulated using the first principle models and the model uncertainty is extracted from plant operation data such that the fault effects on process variables can be decoupled from model uncertainty and normal operation changes. It was found that the developed robust fault diagnosis method was able to eliminate false alarms due to model uncertainty and deal with changes in operating conditions throughout the lifetime of nuclear power systems. Multiple methods of robust data driven model based fault diagnosis were developed in this dissertation. A complete procedure based on causal graph theory and data reconciliation method was developed to investigate the causal relationships and the quantitative sensitivities among variables so that sensor placement could be optimized for fault diagnosis in the design phase. Reconstruction based Principal Component Analysis (PCA) approach was applied to deal with both simple faults and complex faults for steady state diagnosis in the context of operation scheduling and maintenance management. A robust PCA model-based method was developed to distinguish the differences between fault effects and model uncertainties. In order to improve the sensitivity of fault detection, a hybrid PCA model based approach was developed to incorporate system knowledge into data driven modeling. Subspace identification was proposed to extract state space models from thermal hydraulic simulations and a robust dynamic residual generator design algorithm was developed for fault diagnosis for the purpose of fault tolerant control and extension to reactor startup and load following operation conditions. The developed robust dynamic residual generator design algorithm is unique in that explicit identification of model uncertainty is not necessary. Finally, it was demonstrated that the developed new methods for the IRIS Helical Coil Steam Generator (HCSG) system. A simulation model was first developed for this system. It was revealed through steady state simulation that the primary coolant temperature profile could be used to indicate the water inventory inside the HCSG tubes. The performance monitoring and fault diagnosis module was then developed to monitor sensor faults, flow distribution abnormality, and heat performance degradation for both steady state and dynamic operation conditions. This dissertation bridges the gap between the theoretical research on computational intelligence and the engineering design in performance monitoring and fault diagnosis for nuclear power systems. The new algorithms have the potential of being integrated into the Generation III and Generation IV nuclear reactor I&C design after they are tested on current nuclear power plants or Generation IV prototype reactors

    Multi-Modular Integral Pressurized Water Reactor Control and Operational Reconfiguration for a Flow Control Loop

    Get PDF
    This dissertation focused on the IRIS design since this will likely be one of the designs of choice for future deployment in the U.S and developing countries. With a net 335 MWe output IRIS novel design falls in the “medium” size category and it is a potential candidate for the so called modular reactors, which may be appropriate for base load electricity generation, especially in regions with smaller electricity grids, but especially well suited for more specialized non-electrical energy applications such as district heating and process steam for desalination. The first objective of this dissertation is to evaluate and quantify the performance of a Nuclear Power Plant (NPP) comprised of two IRIS reactor modules operating simultaneously with a common steam header, which in turn is connected to a single turbine, resulting in a steam-mixing control problem with respect to “load-following” scenarios, such as varying load during the day or reduced consumption during the weekend. To solve this problem a single-module IRIS SIMULINK model previously developed by another researcher is modified to include a second module and was used to quantify the responses from both modules. In order to develop research related to instrumentation and control, and equipment and sensor monitoring, the second objective is to build a two-tank multivariate loop in the Nuclear Engineering Department at the University of Tennessee. This loop provides the framework necessary to investigate and test control strategies and fault detection in sensors, equipment and actuators. The third objective is to experimentally develop and demonstrate a fault-tolerant control strategy using this loop. Using six correlated variables in a single-tank configuration, five inferential models and one Auto-Associative Kernel Regression (AAKR) model were developed to detect faults in process sensors. Once detected the faulty measurements were successfully substituted with prediction values, which would provide the necessary flexibility and time to find the source of discrepancy and resolve it, such as in an operating power plant. Finally, using the same empirical models, an actuator failure was simulated and once detected the control was automatically transferred and reconfigured from one tank to another, providing survivability to the system

    Nuclear Power Plants

    Get PDF
    This book covers various topics, from thermal-hydraulic analysis to the safety analysis of nuclear power plant. It does not focus only on current power plant issues. Instead, it aims to address the challenging ideas that can be implemented in and used for the development of future nuclear power plants. This book will take the readers into the world of innovative research and development of future plants. Find your interests inside this book

    Engineering Physics and Mathematics Division progress report for period ending December 31, 1994

    Full text link
    • …
    corecore