904 research outputs found

    Traverse: Voice Commanded Self Navigating Indoor Robot

    Get PDF
    When a human is taken to a new place, a new location, the individual first tries to perceive it, then gets to the geography of it and finally maps it. By mapping the whole location, the human goes around the place without any difficulty. In this project, the implementation will be done in such a way that the robot also consumes the parameters of the area in the same way as the human, by first perceiving the location entirely, followed by mapping the whole place and then going around it, thereby marking the location to absolute precision and making it flawless for navigation. To accomplish this performance, a self-navigating algorithm using SLAM (Simultaneous Localization and Mapping) is written and executed. The robot, by using ultrasonic sensors will measure the distances of the surrounding objects

    An Incremental Navigation Localization Methodology for Application to Semi-Autonomous Mobile Robotic Platforms to Assist Individuals Having Severe Motor Disabilities.

    Get PDF
    In the present work, the author explores the issues surrounding the design and development of an intelligent wheelchair platform incorporating the semi-autonomous system paradigm, to meet the needs of individuals with severe motor disabilities. The author presents a discussion of the problems of navigation that must be solved before any system of this type can be instantiated, and enumerates the general design issues that must be addressed by the designers of systems of this type. This discussion includes reviews of various methodologies that have been proposed as solutions to the problems considered. Next, the author introduces a new navigation method, called Incremental Signature Recognition (ISR), for use by semi-autonomous systems in structured environments. This method is based on the recognition, recording, and tracking of environmental discontinuities: sensor reported anomalies in measured environmental parameters. The author then proposes a robust, redundant, dynamic, self-diagnosing sensing methodology for detecting and compensating for hidden failures of single sensors and sensor idiosyncrasies. This technique is optimized for the detection of spatial discontinuity anomalies. Finally, the author gives details of an effort to realize a prototype ISR based system, along with insights into the various implementation choices made

    Planning and Navigation in Dynamic Environments for Mobile Robots and Micro Aerial Vehicles

    Get PDF
    Reliable and robust navigation planning and obstacle avoidance is key for the autonomous operation of mobile robots. In contrast to stationary industrial robots that often operate in controlled spaces, planning for mobile robots has to take changing environments and uncertainties into account during plan execution. In this thesis, planning and obstacle avoidance techniques are proposed for a variety of ground and aerial robots. Common to most of the presented approaches is the exploitation of the nature of the underlying problem to achieve short planning times by using multiresolution or hierarchical approaches. Short planning times allow for continuous and fast replanning to take the uncertainty in the environment and robot motion execution into account. The proposed approaches are evaluated in simulation and real-world experiments. The first part of this thesis addresses planning for mobile ground robots. One contribution is an approach to grasp and object removal planning to pick objects from a transport box with a mobile manipulation robot. In a multistage process, infeasible grasps are pruned in offline and online processing steps. Collision-free endeffector trajectories are planned to the remaining grasps until a valid removal trajectory can be found. An object-centric local multiresolution representation accelerates trajectory planning. The mobile manipulation components are evaluated in an integrated mobile bin-picking system. Local multiresolution planning is employed for path planning for humanoid soccer robots as well. The used Nao robot is equipped with only relatively low computing power. A resource-efficient path planner including the anticipated movements of opponents on the field is developed as part of this thesis. In soccer games an important subproblem is to reach a position behind the ball to dribble or kick it towards the goal. By the assumption that the opponents have the same intention, an explicit representation of their movements is possible. This leads to paths that facilitate the robot to reach its target position with a higher probability without being disturbed by the other robot. The evaluation for the planner is performed in a physics-based soccer simulation. The second part of this thesis covers planning and obstacle avoidance for micro aerial vehicles (MAVs), in particular multirotors. To reduce the planning complexity, the planning problem is split into a hierarchy of planners running on different levels of abstraction, i.e., from abstract to detailed environment descriptions and from coarse to fine plans. A complete planning hierarchy for MAVs is presented, from mission planners for multiple application domains to low-level obstacle avoidance. Missions planned on the top layer are executed by means of coupled allocentric and egocentric path planning. Planning is accelerated by global and local multiresolution representations. The planners can take multiple objectives into account in addition to obstacle costs and path length, e.g., sensor constraints. The path planners are supplemented by trajectory optimization to achieve dynamically feasible trajectories that can be executed by the underlying controller at higher velocities. With the initialization techniques presented in this thesis, the convergence of the optimization problem is expedited. Furthermore, frequent reoptimization of the initial trajectory allows for the reaction to changes in the environment without planning and optimizing a complete new trajectory. Fast, reactive obstacle avoidance based on artificial potential fields acts as a safety layer in the presented hierarchy. The obstacle avoidance layer employs egocentric sensor data and can operate at the data acquisition frequency of up to 40 Hz. It can slow-down and stop the MAVs in front of obstacles as well as avoid approaching dynamic obstacles. We evaluate our planning and navigation hierarchy in simulation and with a variety of MAVs in real-world applications, especially outdoor mapping missions, chimney and building inspection, and automated stocktaking.Planung und Navigation in dynamischen Umgebungen für mobile Roboter und Multikopter Zuverlässige und sichere Navigationsplanung und Hindernisvermeidung ist ein wichtiger Baustein für den autonomen Einsatz mobiler Roboter. Im Gegensatz zu klassischen Industrierobotern, die in der Regel in abgetrennten, kontrollierten Bereichen betrieben werden, ist es in der mobilen Robotik unerlässlich, Änderungen in der Umgebung und die Unsicherheit bei der Aktionsausführung zu berücksichtigen. Im Rahmen dieser Dissertation werden Verfahren zur Planung und Hindernisvermeidung für eine Reihe unterschiedlicher Boden- und Flugroboter entwickelt und vorgestellt. Den meisten beschriebenen Ansätzen ist gemein, dass die Struktur der zu lösenden Probleme ausgenutzt wird, um Planungsprozesse zu beschleunigen. Häufig ist es möglich, mit abnehmender Genauigkeit zu planen desto weiter eine Aktion in der Zeit oder im Ort entfernt ist. Dieser Ansatz wird lokale Multiresolution genannt. In anderen Fällen ist eine Zerlegung des Problems in Schichten unterschiedlicher Genauigkeit möglich. Die damit zu erreichende Beschleunigung der Planung ermöglicht ein häufiges Neuplanen und somit die Reaktion auf Änderungen in der Umgebung und Abweichungen bei den ausgeführten Aktionen. Zur Evaluation der vorgestellten Ansätze werden Experimente sowohl in der Simulation als auch mit Robotern durchgeführt. Der erste Teil dieser Dissertation behandelt Planungsmethoden für mobile Bodenroboter. Um Objekte mit einem mobilen Roboter aus einer Transportkiste zu greifen und zur Weiterverarbeitung zu einem Arbeitsplatz zu liefern, wurde ein System zur Planung möglicher Greifposen und hindernisfreier Endeffektorbahnen entwickelt. In einem mehrstufigen Prozess werden mögliche Griffe an bekannten Objekten erst in mehreren Vorverarbeitungsschritten (offline) und anschließend, passend zu den erfassten Objekten, online identifiziert. Zu den verbleibenden möglichen Griffen werden Endeffektorbahnen geplant und, bei Erfolg, ausgeführt. Die Greif- und Bahnplanung wird durch eine objektzentrische lokale Multiresolutionskarte beschleunigt. Die Einzelkomponenten werden in einem prototypischen Gesamtsystem evaluiert. Eine weitere Anwendung für die lokale Multiresolutionsplanung ist die Pfadplanung für humanoide Fußballroboter. Zum Einsatz kommen Nao-Roboter, die nur über eine sehr eingeschränkte Rechenleistung verfügen. Durch die Reduktion der Planungskomplexität mit Hilfe der lokalen Multiresolution, wurde die Entwicklung eines Planers ermöglicht, der zusätzlich zur aktuellen Hindernisfreiheit die Bewegung der Gegenspieler auf dem Feld berücksichtigt. Hierbei liegt der Fokus auf einem wichtigen Teilproblem, dem Erreichen einer guten Schussposition hinter dem Ball. Die Tatsache, dass die Gegenspieler vergleichbare Ziele verfolgen, ermöglicht es, Annahmen über mögliche Laufwege zu treffen. Dadurch ist die Planung von Pfaden möglich, die das Risiko, durch einen Gegenspieler passiv geblockt zu werden, reduzieren, so dass die Schussposition schneller erreicht wird. Dieser Teil der Arbeit wird in einer physikalischen Fußballsimulation evaluiert. Im zweiten Teil dieser Dissertation werden Methoden zur Planung und Hindernisvermeidung von Multikoptern behandelt. Um die Planungskomplexität zu reduzieren, wird das zu lösenden Planungsproblem hierarchisch zerlegt und durch verschiedene Planungsebenen verarbeitet. Dabei haben höhere Planungsebenen eine abstraktere Weltsicht und werden mit niedriger Frequenz ausgeführt, zum Beispiel die Missionsplanung. Niedrigere Ebenen haben eine Weltsicht, die mehr den Sensordaten entspricht und werden mit höherer Frequenz ausgeführt. Die Granularität der resultierenden Pläne verfeinert sich hierbei auf niedrigeren Ebenen. Im Rahmen dieser Dissertation wurde eine komplette Planungshierarchie für Multikopter entwickelt, von Missionsplanern für verschiedene Anwendungsgebiete bis zu schneller Hindernisvermeidung. Pfade zur Ausführung geplanter Missionen werden durch zwei gekoppelte Planungsebenen erstellt, erst allozentrisch, und dann egozentrisch verfeinert. Hierbei werden ebenfalls globale und lokale Multiresolutionsrepräsentationen zur Beschleunigung der Planung eingesetzt. Zusätzlich zur Hindernisfreiheit und Länge der Pfade können auf diesen Planungsebenen weitere Zielfunktionen berücksichtigt werden, wie zum Beispiel die Berücksichtigung von Sensorcharakteristika. Ergänzt werden die Planungsebenen durch die Optimierung von Flugbahnen. Diese Flugbahnen berücksichtigen eine angenäherte Flugdynamik und erlauben damit ein schnelleres Verfolgen der optimierten Pfade. Um eine schnelle Konvergenz des Optimierungsproblems zu erreichen, wurde in dieser Arbeit ein Verfahren zur Initialisierung entwickelt. Des Weiteren kommen Methoden zur schnellen Verfeinerung des Optimierungsergebnisses bei Änderungen im Weltzustand zum Einsatz, diese ermöglichen die Reaktion auf neue Hindernisse oder Abweichungen von der Flugbahn, ohne eine komplette Flugbahn neu zu planen und zu optimieren. Die Sicherheit des durch die Planungs- und Optimierungsebenen erstellten Pfades wird durch eine schnelle, reaktive Hindernisvermeidung gewährleistet. Das Hindernisvermeidungsmodul basiert auf der Methode der künstlichen Potentialfelder. Durch die Verwendung dieser schnellen Methode kombiniert mit der Verwendung von nicht oder nur über kurze Zeiträume aggregierte Sensordaten, ermöglicht die Reaktion auf unbekannte Hindernisse, kurz nachdem diese von den Sensoren wahrgenommen wurden. Dabei kann der Multikopter abgebremst oder gestoppt werden, und sich von nähernden Hindernissen entfernen. Die Komponenten der Planungs- und Hindernisvermeidungshierarchie werden sowohl in der Simulation evaluiert, als auch in integrierten Gesamtsystemen mit verschiedenen Multikoptern in realen Anwendungen. Dies sind insbesondere die Kartierung von Innen- und Außenbereichen, die Inspektion von Gebäuden und Schornsteinen sowie die automatisierte Inventur von Lägern

    Closed-Loop Planning and Control of Steerable Medical Needles

    Get PDF
    Steerable needles have the potential to increase the effectiveness of needle-based clinical procedures such as biopsy, drug delivery, and radioactive seed implantation for cancer treatment. These needles can trace curved paths when inserted into tissue, thereby increasing maneuverability and targeting accuracy while reaching previously inaccessible targets that are behind sensitive or impenetrable anatomical regions. Guiding these flexible needles along an intended path requires continuously inserting and twisting the needle at its base, which is not intuitive for a human operator. In addition, the needle often deviates from its intended trajectory due to factors such as tissue deformation, needle-tissue interaction, noisy actuation and sensing, modeling errors, and involuntary patient motions. These challenges can be addressed with the assistance of robotic systems that automatically compensate for these perturbations by performing motion planning and feedback control of the needle in a closed-loop fashion under sensory feedback. We present two approaches for efficient closed-loop guidance of steerable needles to targets within clinically acceptable accuracy while safely avoiding sensitive or impenetrable anatomical structures. The first approach uses a fast motion planning algorithm that unifies planning and control by continuously replanning, enabling correction for perturbations as they occur. We evaluate our method using a needle steering system in phantom and ex vivo animal tissues. The second approach integrates motion planning and feedback control of steerable needles in highly deformable environments. We demonstrate that this approach significantly improves the probability of success compared to prior approaches that either consider uncertainty or deformations but not both simultaneously. We also propose a data-driven method to estimate parameters of stochastic models of steerable needle motion. These models can be used to create realistic medical simulators for clinicians wanting to train for steerable needle procedures and to improve the effectiveness of existing planning and control methods. This dissertation advances the state of the art in planning and control of steerable needles and is an important step towards realizing needle steering in clinical practice. The methods developed in this dissertation also generalize to important applications beyond medical needle steering, such as manipulating deformable objects and control of mobile robots.Doctor of Philosoph

    Visual guidance of unmanned aerial manipulators

    Get PDF
    The ability to fly has greatly expanded the possibilities for robots to perform surveillance, inspection or map generation tasks. Yet it was only in recent years that research in aerial robotics was mature enough to allow active interactions with the environment. The robots responsible for these interactions are called aerial manipulators and usually combine a multirotor platform and one or more robotic arms. The main objective of this thesis is to formalize the concept of aerial manipulator and present guidance methods, using visual information, to provide them with autonomous functionalities. A key competence to control an aerial manipulator is the ability to localize it in the environment. Traditionally, this localization has required external infrastructure of sensors (e.g., GPS or IR cameras), restricting the real applications. Furthermore, localization methods with on-board sensors, exported from other robotics fields such as simultaneous localization and mapping (SLAM), require large computational units becoming a handicap in vehicles where size, load, and power consumption are important restrictions. In this regard, this thesis proposes a method to estimate the state of the vehicle (i.e., position, orientation, velocity and acceleration) by means of on-board, low-cost, light-weight and high-rate sensors. With the physical complexity of these robots, it is required to use advanced control techniques during navigation. Thanks to their redundancy on degrees-of-freedom, they offer the possibility to accomplish not only with mobility requirements but with other tasks simultaneously and hierarchically, prioritizing them depending on their impact to the overall mission success. In this work we present such control laws and define a number of these tasks to drive the vehicle using visual information, guarantee the robot integrity during flight, and improve the platform stability or increase arm operability. The main contributions of this research work are threefold: (1) Present a localization technique to allow autonomous navigation, this method is specifically designed for aerial platforms with size, load and computational burden restrictions. (2) Obtain control commands to drive the vehicle using visual information (visual servo). (3) Integrate the visual servo commands into a hierarchical control law by exploiting the redundancy of the robot to accomplish secondary tasks during flight. These tasks are specific for aerial manipulators and they are also provided. All the techniques presented in this document have been validated throughout extensive experimentation with real robotic platforms.La capacitat de volar ha incrementat molt les possibilitats dels robots per a realitzar tasques de vigilància, inspecció o generació de mapes. Tot i això, no és fins fa pocs anys que la recerca en robòtica aèria ha estat prou madura com per començar a permetre interaccions amb l’entorn d’una manera activa. Els robots per a fer-ho s’anomenen manipuladors aeris i habitualment combinen una plataforma multirotor i un braç robòtic. L’objectiu d’aquesta tesi és formalitzar el concepte de manipulador aeri i presentar mètodes de guiatge, utilitzant informació visual, per dotar d’autonomia aquest tipus de vehicles. Una competència clau per controlar un manipulador aeri és la capacitat de localitzar-se en l’entorn. Tradicionalment aquesta localització ha requerit d’infraestructura sensorial externa (GPS, càmeres IR, etc.), limitant així les aplicacions reals. Pel contrari, sistemes de localització exportats d’altres camps de la robòtica basats en sensors a bord, com per exemple mètodes de localització i mapejat simultànis (SLAM), requereixen de gran capacitat de còmput, característica que penalitza molt en vehicles on la mida, pes i consum elèctric son grans restriccions. En aquest sentit, aquesta tesi proposa un mètode d’estimació d’estat del robot (posició, velocitat, orientació i acceleració) a partir de sensors instal·lats a bord, de baix cost, baix consum computacional i que proporcionen mesures a alta freqüència. Degut a la complexitat física d’aquests robots, és necessari l’ús de tècniques de control avançades. Gràcies a la seva redundància de graus de llibertat, aquests robots ens ofereixen la possibilitat de complir amb els requeriments de mobilitat i, simultàniament, realitzar tasques de manera jeràrquica, ordenant-les segons l’impacte en l’acompliment de la missió. En aquest treball es presenten aquestes lleis de control, juntament amb la descripció de tasques per tal de guiar visualment el vehicle, garantir la integritat del robot durant el vol, millorar de l’estabilitat del vehicle o augmentar la manipulabilitat del braç. Aquesta tesi es centra en tres aspectes fonamentals: (1) Presentar una tècnica de localització per dotar d’autonomia el robot. Aquest mètode està especialment dissenyat per a plataformes amb restriccions de capacitat computacional, mida i pes. (2) Obtenir les comandes de control necessàries per guiar el vehicle a partir d’informació visual. (3) Integrar aquestes accions dins una estructura de control jeràrquica utilitzant la redundància del robot per complir altres tasques durant el vol. Aquestes tasques son específiques per a manipuladors aeris i també es defineixen en aquest document. Totes les tècniques presentades en aquesta tesi han estat avaluades de manera experimental amb plataformes robòtiques real

    A graph-theory-based C-space path planner for mobile robotic manipulators in close-proximity environments

    Get PDF
    In this thesis a novel guidance method for a 3-degree-of-freedom robotic manipulator arm in 3 dimensions for Improvised Explosive Device (IED) disposal has been developed. The work carried out in this thesis combines existing methods to develop a technique that delivers advantages taken from several other guidance techniques. These features are necessary for the IED disposal application. The work carried out in this thesis includes kinematic and dynamic modelling of robotic manipulators, T-space to C-space conversion, and path generation using Graph Theory to produce a guidance technique which can plan a safe path through a complex unknown environment. The method improves upon advantages given by other techniques in that it produces a suitable path in 3-dimensions in close-proximity environments in real time with no a priori knowledge of the environment, a necessary precursor to the application of this technique to IED disposal missions. To solve the problem of path planning, the thesis derives the kinematics and dynamics of a robotic arm in order to convert the Euclidean coordinates of measured environment data into C-space. Each dimension in C-space is one control input of the arm. The Euclidean start and end locations of the manipulator end effector are translated into C-space. A three-dimensional path is generated between them using Dijkstra’s Algorithm. The technique allows for a single path to be generated to guide the entire arm through the environment, rather than multiple paths to guide each component through the environment. The robotic arm parameters are modelled as a quasi-linear parameter varying system. As such it requires gain scheduling control, thus allowing compensation of the non-linearities in the system. A Genetic Algorithm is applied to tune a set of PID controllers for the dynamic model of the manipulator arm so that the generated path can then be followed using a conventional path-following algorithm. The technique proposed in this thesis is validated using numerical simulations in order to determine its advantages and limitations

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described
    • …
    corecore