96 research outputs found

    The Meandering Current Mobility Model and its impact on Underwater Mobile Sensor Networks

    Get PDF
    Underwater mobile acoustic sensor networks are promising tools for the exploration of the oceans. These networks require new robust solutions for fundamental issues such as: localization service for data tagging and networking protocols for communication. All these tasks are closely related with connectivity, coverage and deployment of the network. A realistic mobility model that can capture the physical movement of the sensor nodes with ocean currents gives better understanding on the above problems. In this paper, we propose a novel physically-inspired mobility model which is representative of underwater environments. We study how the model affects a range-based localization protocol, and its impact on the coverage and connectivity of the network under different deployment scenarios

    Development of a New Lagrangian Float for Studying Coastal Marine Ecosystems

    Get PDF
    This paper presents an overview and initial testing results for a shallow water Lagrangian float designed to operate in coastal settings. The presented effort addresses the two main characteristics of the shallow coastal environment that preclude the direct of use of many successfully deep water floats, namely the higher variation of water densities near the coast compared with the open ocean and the highly varied bathymetry. Our idea is to develop a high capacity dynamic auto-ballasting system that is able to compensate for the expected seawater density variation over a broad range of water temperatures and salinities while using measurements of both pressure and altitude above the bottom. The major components of the float consist of a Netburner micro processor, rechargeable lithium ion battery system, piston style volume changing mechanism, sensors for pressure and altitude, and a safely system for recovery and emergency conditions. Results are presented for field tests that verify the performance of the float for a variety of behaviors that are of general utility for both water tracking an profile sampling

    Designing an Adaptive Acoustic Modem for Underwater Sensor Networks

    Get PDF
    Abstract-There is a growing interest in using underwater networked systems for oceanographic applications. These networks often rely on acoustic communication, which poses a number of challenges for reliable data transmission. The underwater acoustic channel is highly variable; each link can experience a vastly conditions, which change according to environmental factors as well as the locations of the communicating nodes. This makes it difficult to ensure reliable communication. Furthermore, due to the high transmit power, the energy consumed in transmitting data is substantial which is exacerbated at lower data rates. The main challenge that we address in this article is how to build a system that provides reliable and energy efficient communication in underwater sensor networks. To this end, we propose an adaptive underwater acoustic modem which changes its parameters according to the situation. We present the design of such a modem and provide supporting results from simulations and experiments

    Wireless Sensor Networks for Underwater Localization: A Survey

    Get PDF
    Autonomous Underwater Vehicles (AUVs) have widely deployed in marine investigation and ocean exploration in recent years. As the fundamental information, their position information is not only for data validity but also for many real-world applications. Therefore, it is critical for the AUV to have the underwater localization capability. This report is mainly devoted to outline the recent advance- ment of Wireless Sensor Networks (WSN) based underwater localization. Several classic architectures designed for Underwater Acoustic Sensor Network (UASN) are brie y introduced. Acoustic propa- gation and channel models are described and several ranging techniques are then explained. Many state-of-the-art underwater localization algorithms are introduced, followed by the outline of some existing underwater localization systems

    Design considerations for engineering autonomous underwater vehicles

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2007Autonomous Underwater Vehicles (AUVs) have been established as a viable tool for Oceanographic Sciences. Being untethered and independent, AUVs fill the gap in Ocean Exploration left by the existing manned submersible and remotely operated vehicles (ROV) technology. AUVs are attractive as cheaper and efficient alternatives to the older technologies and are breaking new ground in many applications. Designing an autonomous vehicle to work in the harsh environment of the deep ocean comes with its set of challenges. This paper discusses how the current engineering technologies can be adapted to the design of AUVs. Recently, as the AUV technology has matured, we see AUVs being used in a variety of applications ranging from sub-surface sensing to sea-floor mapping. The design of the AUV, with its tight constraints, is very sensitive to the target application. Keeping this in mind, the goal of this thesis is to understand how some of the major issues affect the design of the AUV. This paper also addresses the mechanical and materials issues, power system design, computer architecture, navigation and communication systems, sensor considerations and long term docking aspects that affect AUV design. With time, as the engineering sciences progress, the AUV design will have to change in order to optimize its performance. Thus, the fundamental issues discussed in this paper can assist in meeting the challenge of maintaining AUV design on par with modern technology.This work was funded by the NSF Center for Subsurface Sensing and Imaging Systems (CenSSIS) Engineering Research Center (ENC) grant no. EEC-99868321

    Underwater acoustic channel properties in the Gulf of Naples and their effects on digital data transmission

    Get PDF
    In this paper we studied the physical properties of the Gulf of Naples (Southern Italy) for its use as a commu- nication channel for the acoustic transmission of digital data acquired by seismic instruments on the seafloor to a moored buoy. The acoustic link will be assured by high frequency acoustic modems operating with a central frequency of 100 kHz and a band pass of 10 kHz. The main operational requirements of data transmission con- cern the near horizontal acoustic link, the maximum depth of the sea being about 300 m and the planned hori- zontal distance between seismic instruments and buoy 2 km. This study constructs the signal-to-noise ratio maps to understand the limits beyond which the clarity of the transmission is no longer considered reliable. Using ray- theory, we compute the amplitudes of a transmitted signal at a grid of 21×12 receivers to calculate the transmis- sion loss at each receiver. The signal-to-noise ratio is finally computed for each receiver knowing also the trans- mitter source level and the acoustic noise level in the Gulf of Naples. The results show that the multipath effects predominate over the effects produced by the sound velocity gradient in the sea in the summer period. In the case of omnidirectional transmitters with a Source Level (SL) of 165 dB and a baud rate of 2.4 kbit/s, the results al- so show that distances of 1400-1600 m can be reached throughout the year for transmitter-receiver connections below 50 m depth in the underwater acoustic channel

    New frontiers in ocean exploration: the E/V Nautilus, NOAA Ship Okeanos Explorer, and R/V Falkor 2019 field season

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Raineault, N.A., and J. Flanders, eds. (2020). New frontiers in ocean exploration: The E/V Nautilus, NOAA Ship Okeanos Explorer, and R/V Falkor 2019 field season. Oceanography 33(1), supplement, 122 pp., https://doi.org/10.5670/oceanog.2020.supplement.01.New Frontiers in Ocean Exploration: The E/V Nautilus, NOAA Ship Okeanos Explorer, and R/V Falkor 2019 Field Season is the tenth consecutive supplement on ocean exploration to accompany Oceanography. These booklets provide details about the innovative technologies deployed to investigate the seafloor and water column and explain how telepresence can both convey the excitement of ocean exploration to global audiences and allow scientists as well as the public on shore to participate in expeditions in real time. The supplements also describe the variety of educational programs the Ocean Exploration Trust, the NOAA Office of Ocean Exploration and Research, and the Schmidt Ocean Institute support in conjunction with schools, museums, visitors centers, and aquariums, as well as internships that bring high school students, undergraduates, graduate students, teachers, and artists on board ships. Through these supplements, we have explored the geology, chemistry, biology, and archaeology of parts of the global ocean and seas. We hope you enjoy this booklet and share it widely.Support for this publication is provided by the Ocean Exploration Trust, the NOAA Office of Ocean Exploration and Research, the National Marine Sanctuary Foundation, and the Schmidt Ocean Institute

    Underwater acoustic channel properties in the Gulf of Naples and their effects on digital data transmission

    Get PDF
    In this paper we studied the physical properties of the Gulf of Naples (Southern Italy) for its use as a commu- nication channel for the acoustic transmission of digital data acquired by seismic instruments on the seafloor to a moored buoy. The acoustic link will be assured by high frequency acoustic modems operating with a central frequency of 100 kHz and a band pass of 10 kHz. The main operational requirements of data transmission con- cern the near horizontal acoustic link, the maximum depth of the sea being about 300 m and the planned hori- zontal distance between seismic instruments and buoy 2 km. This study constructs the signal-to-noise ratio maps to understand the limits beyond which the clarity of the transmission is no longer considered reliable. Using ray- theory, we compute the amplitudes of a transmitted signal at a grid of 21×12 receivers to calculate the transmis- sion loss at each receiver. The signal-to-noise ratio is finally computed for each receiver knowing also the trans- mitter source level and the acoustic noise level in the Gulf of Naples. The results show that the multipath effects predominate over the effects produced by the sound velocity gradient in the sea in the summer period. In the case of omnidirectional transmitters with a Source Level (SL) of 165 dB and a baud rate of 2.4 kbit/s, the results al- so show that distances of 1400-1600 m can be reached throughout the year for transmitter-receiver connections below 50 m depth in the underwater acoustic channel

    Design, Testing and Evaluation of Robotic Mechanisms and Systems for Environmental Monitoring and Interaction

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have significantly lowered the cost of remote aerial data collection. The next generation of UAVs, however, will transform the way that scientists and practitioners interact with the environment. In this thesis, we address the challenges of flying low over water to collect water samples and temperature data. We also develop a system that allows UAVs to ignite prescribed fires. Specifically, this thesis contributes a new peristaltic pump designed for use on a UAV for collecting water samples from up to 3m depth and capable of pumping over 6m above the water. Next, temperature sensors and their deployment on UAVs, which have successfully created a 3D thermal structure map of a lake, contributes to mobile sensors. A sub-surface sampler, the “Waterbug” which can sample from 10m deep and vary buoyancy for longer in-situ analysis contributes to robotics and mobile sensors. Finally, we designed and built an Unmanned Aerial System for Fire Fighting (UAS-FF), which successfully ignited over 150 acres of prescribed fire during two field tests and is the first autonomous robot system for this application. Advisers: Carrick Detweiler and Carl Nelso

    Design, Testing and Evaluation of Robotic Mechanisms and Systems for Environmental Monitoring and Interaction

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have significantly lowered the cost of remote aerial data collection. The next generation of UAVs, however, will transform the way that scientists and practitioners interact with the environment. In this thesis, we address the challenges of flying low over water to collect water samples and temperature data. We also develop a system that allows UAVs to ignite prescribed fires. Specifically, this thesis contributes a new peristaltic pump designed for use on a UAV for collecting water samples from up to 3m depth and capable of pumping over 6m above the water. Next, temperature sensors and their deployment on UAVs, which have successfully created a 3D thermal structure map of a lake, contributes to mobile sensors. A sub-surface sampler, the “Waterbug” which can sample from 10m deep and vary buoyancy for longer in-situ analysis contributes to robotics and mobile sensors. Finally, we designed and built an Unmanned Aerial System for Fire Fighting (UAS-FF), which successfully ignited over 150 acres of prescribed fire during two field tests and is the first autonomous robot system for this application. Advisers: Carrick Detweiler and Carl Nelso
    corecore