1,963 research outputs found

    Sensor management for multi-target tracking via multi-bernoulli filtering

    Get PDF
    In multi-object stochastic systems, the issue of sensor management is a theoretically and computationally challenging problem. In this paper, we present a novel random finite set (RFS) approach to the multi-target sensor management problem within the partially observed Markov decision process (POMDP) framework. The multi-target state is modelled as a multi-Bernoulli RFS, and the multi-Bernoulli filter is used in conjunction with two different control objectives: maximizing the expected Rényi divergence between the predicted and updated densities, and minimizing the expected posterior cardinality variance. Numerical studies are presented in two scenarios where a mobile sensor tracks five moving targets with different levels of observability

    Multi-Bernoulli Sensor-Control via Minimization of Expected Estimation Errors

    Full text link
    This paper presents a sensor-control method for choosing the best next state of the sensor(s), that provide(s) accurate estimation results in a multi-target tracking application. The proposed solution is formulated for a multi-Bernoulli filter and works via minimization of a new estimation error-based cost function. Simulation results demonstrate that the proposed method can outperform the state-of-the-art methods in terms of computation time and robustness to clutter while delivering similar accuracy

    Sensor Control for Multi-Object Tracking Using Labeled Multi-Bernoulli Filter

    Full text link
    The recently developed labeled multi-Bernoulli (LMB) filter uses better approximations in its update step, compared to the unlabeled multi-Bernoulli filters, and more importantly, it provides us with not only the estimates for the number of targets and their states, but also with labels for existing tracks. This paper presents a novel sensor-control method to be used for optimal multi-target tracking within the LMB filter. The proposed method uses a task-driven cost function in which both the state estimation errors and cardinality estimation errors are taken into consideration. Simulation results demonstrate that the proposed method can successfully guide a mobile sensor in a challenging multi-target tracking scenario

    Information theoretic approach to robust multi-Bernoulli sensor control

    Full text link
    A novel sensor control solution is presented, formulated within a Multi-Bernoulli-based multi-target tracking framework. The proposed method is especially designed for the general multi-target tracking case, where no prior knowledge of the clutter distribution or the probability of detection profile are available. In an information theoretic approach, our method makes use of R\`{e}nyi divergence as the reward function to be maximized for finding the optimal sensor control command at each step. We devise a Monte Carlo sampling method for computation of the reward. Simulation results demonstrate successful performance of the proposed method in a challenging scenario involving five targets maneuvering in a relatively uncertain space with unknown distance-dependent clutter rate and probability of detection
    corecore