3,472 research outputs found

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Designing Web-enabled services to provide damage estimation maps caused by natural hazards

    Get PDF
    The availability of building stock inventory data and demographic information is an important requirement for risk assessment studies when attempting to predict and estimate losses due to natural hazards such as earthquakes, storms, floods or tsunamis. The better this information is provided, the more accurate are predictions on damage to structures and lifelines and the better can expected impacts on the population be estimated. When a disaster strikes, a map is often one of the first requirements for answering questions related to location, casualties and damage zones caused by the event. Maps of appropriate scale that represent relative and absolute damage distributions may be of great importance for rescuing lives and properties, and for providing relief. However, this type of maps is often difficult to obtain during the first hours or even days after the occurrence of a natural disaster. The Open Geospatial Consortium Web Services (OWS) Specifications enable access to datasets and services using shared, distributed and interoperable environments through web-enabled services. In this paper we propose the use of OWS in view of these advantages as a possible solution for issues related to suitable dataset acquisition for risk assessment studies. The design of web-enabled services was carried out using the municipality of Managua (Nicaragua) and the development of damage and loss estimation maps caused by earthquakes as a first case study. Four organizations located in different places are involved in this proposal and connected through web services, each one with a specific role
    corecore