569 research outputs found

    Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS), phase 2. Volume 1: Telepresence technology base development

    Get PDF
    The field of telepresence is defined, and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA's plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies over the next decade are included. Several space projects are examined in detail to determine what capabilities are required of a telepresence system in order to accomplish various tasks, such as servicing and assembly. The key operational and technological areas are identified, conclusions and recommendations are made for further research, and an example developmental program is presented, leading to an operational telepresence servicer

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    The Propulsion of Reconfigurable Modular Robots in Fluidic Environments

    Get PDF
    Reconfigurable modular robots promise to transform the way robotic systems are designed and operated. Fluidic or microgravity environments, which can be difficult or dangerous for humans to work in, are ideal domains for the use of modular systems. This thesis proposes that combining effective propulsion, large reconfiguration space and high scalability will increase the utility of modular robots. A novel concept for the propulsion of reconfigurable modular robots is developed. Termed Modular Fluidic Propulsion (MFP), this concept describes a system that propels by routing fluid though itself. This allows MFP robots to self-propel quickly and effectively in any configuration, while featuring a cubic lattice structure. A decentralized occlusion-based motion controller for the system is developed. The simplicity of the controller, which requires neither run-time memory nor computation via logic units, combined with the simple binary sensors and actuators of the robot, gives the system a high level of scalabilty. It is proven formally that 2-D MFP robots are able to complete a directed locomotion task under certain assumptions. Simulations in 3-D show that robots composed of 125 modules in a variety of configurations can complete the task. A hardware prototype that floats on the surface of water is developed. Experiments show that robots composed of four modules can complete the task in any configuration. This thesis also investigates the evo-bots, a self-reconfigurable modular system that floats in 2-D on an air table. The evo-bot system uses a stop-start propulsion mechanism to choose between moving randomly or not moving at all. This is demonstrated experimentally for the first time. In addition, the ability of the modules to detect, harvest and share energy, as well as self-assemble into simple structures, is demonstrated

    Crew station design

    Get PDF

    Underwater robotics in the future of arctic oil and gas operations

    Get PDF
    Master's thesis in Petroleum engineeringArctic regions have lately been in the centre of increasing attention due to high vulnerability to climate change and the retreat in sea ice cover. Commercial actors are exploring the Arctic for new shipping routes and natural resources while scientific activity is being intensified to provide better understanding of the ecosystems. Marine surveys in the Arctic have traditionally been conducted from research vessels, requiring considerable resources and involving high risks where sea ice is present. Thus, development of low-cost methods for collecting data in extreme areas is of interest for both industrial purposes and environmental management. The main objective of this thesis is to investigate the use of underwater vehicles as sensor platforms for oil and gas industry applications with focus on seabed mapping and monitoring. Theoretical background and a review of relevant previous studies are provided prior to presentation of the fieldwork, which took place in January 2017 in Kongsfjorden (Svalbard). The fieldwork was a part of the Underwater Robotics and Polar Night Biology course offered at the University Centre in Svalbard. Applied unmanned platforms included remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs) and an autonomous surface vehicle (ASV). They were equipped with such sensors as side-scan sonar, multi-beam echo sounder, camera and others. The acquired data was processed and used to provide information about the study area. The carried out analysis of the vehicle performance gives an insight into challenges specific to marine surveys in the Arctic regions, especially during the period of polar night. The discussion is focused on the benefits of underwater robotics and integrated platform surveying in remote and harsh environment. Recommendations for further research and suggestions for application of similar vehicles and sensors are also given in the thesis

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme
    • …
    corecore