947 research outputs found

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Using a Semi-autonomous Drone Swarm to Support Wildfire Management – A Concept of Operations Development Study

    Get PDF
    This paper provides insights into a human factors-oriented Concept of Operations (ConOps), which can be applied for future semi-autonomous drone swarms to support the management of wildfires. The results provide, firstly, an overview of the current practices to manage wildfires in Finland. Secondly, some of the current challenges and future visions about drone usage in a wildfire situation are presented. Third, a description of the key elements of the developed future ConOps for operating a drone swarm to support the combat of wildfires is given. The ConOps has been formulated based on qualitative research, which included a literature review, seven subject matter expert interviews and a workshop with 40 professionals in the domain. Many elements of this ConOps may also be applied to a variety of other swarm robotics operations than only wildfire management. Finally, as the development of the ConOps is still in its first stage, several further avenues for research and development are proposed

    Swarming Reconnaissance Using Unmanned Aerial Vehicles in a Parallel Discrete Event Simulation

    Get PDF
    Current military affairs indicate that future military warfare requires safer, more accurate, and more fault-tolerant weapons systems. Unmanned Aerial Vehicles (UAV) are one answer to this military requirement. Technology in the UAV arena is moving toward smaller and more capable systems and is becoming available at a fraction of the cost. Exploiting the advances in these miniaturized flying vehicles is the aim of this research. How are the UAVs employed for the future military? The concept of operations for a micro-UAV system is adopted from nature from the appearance of flocking birds, movement of a school of fish, and swarming bees among others. All of these natural phenomena have a common thread: a global action resulting from many small individual actions. This emergent behavior is the aggregate result of many simple interactions occurring within the flock, school, or swarm. In a similar manner, a more robust weapon system uses emergent behavior resulting in no weakest link because the system itself is made up of simple interactions by hundreds or thousands of homogeneous UAVs. The global system in this research is referred to as a swarm. Losing one or a few individual unmanned vehicles would not dramatically impact the swarms ability to complete the mission or cause harm to any human operator. Swarming reconnaissance is the emergent behavior of swarms to perform a reconnaissance operation. An in-depth look at the design of a reconnaissance swarming mission is studied. A taxonomy of passive reconnaissance applications is developed to address feasibility. Evaluation of algorithms for swarm movement, communication, sensor input/analysis, targeting, and network topology result in priorities of each model\u27s desired features. After a thorough selection process of available implementations, a subset of those models are integrated and built upon resulting in a simulation that explores the innovations of swarming UAVs

    Swarm Based Implementation of a Virtual Distributed Database System in a Sensor Network

    Get PDF
    The deployment of unmanned aerial vehicles (UAVs) in recent military operations has had success in carrying out surveillance and combat missions in sensitive areas. An area of intense research on UAVs has been on controlling a group of small-sized UAVs to carry out reconnaissance missions normally undertaken by large UAVs such as Predator or Global Hawk. A control strategy for coordinating the UAV movements of such a group of UAVs adopts the bio-inspired swarm model to produce autonomous group behavior. This research proposes establishing a distributed database system on a group of swarming UAVs, providing for data storage during a reconnaissance mission. A distributed database system model is simulated treating each UAV as a distributed database site connected by a wireless network. In this model, each UAV carries a sensor and communicates to a command center when queried. Drawing equivalence to a sensor network, the network of UAVs poses as a dynamic ad-hoc sensor network. The distributed database system based on a swarm of UAVs is tested against a set of reconnaissance test suites with respect to evaluating system performance. The design of experiments focuses on the effects of varying the query input and types of swarming UAVs on overall system performance. The results show that the topology of the UAVs has a distinct impact on the output of the sensor database. The experiments measuring system delays also confirm the expectation that in a distributed system, inter-node communication costs outweigh processing costs

    Decentralized Visual-Inertial-UWB Fusion for Relative State Estimation of Aerial Swarm

    Full text link
    The collaboration of unmanned aerial vehicles (UAVs) has become a popular research topic for its practicability in multiple scenarios. The collaboration of multiple UAVs, which is also known as aerial swarm is a highly complex system, which still lacks a state-of-art decentralized relative state estimation method. In this paper, we present a novel fully decentralized visual-inertial-UWB fusion framework for relative state estimation and demonstrate the practicability by performing extensive aerial swarm flight experiments. The comparison result with ground truth data from the motion capture system shows the centimeter-level precision which outperforms all the Ultra-WideBand (UWB) and even vision based method. The system is not limited by the field of view (FoV) of the camera or Global Positioning System (GPS), meanwhile on account of its estimation consistency, we believe that the proposed relative state estimation framework has the potential to be prevalently adopted by aerial swarm applications in different scenarios in multiple scales.Comment: Accepted ICRA 202

    Introduction to Drone Detection Radar with Emphasis on Automatic Target Recognition (ATR) technology

    Full text link
    This paper discusses the challenges of detecting and categorizing small drones with radar automatic target recognition (ATR) technology. The authors suggest integrating ATR capabilities into drone detection radar systems to improve performance and manage emerging threats. The study focuses primarily on drones in Group 1 and 2. The paper highlights the need to consider kinetic features and signal signatures, such as micro-Doppler, in ATR techniques to efficiently recognize small drones. The authors also present a comprehensive drone detection radar system design that balances detection and tracking requirements, incorporating parameter adjustment based on scattering region theory. They offer an example of a performance improvement achieved using feedback and situational awareness mechanisms with the integrated ATR capabilities. Furthermore, the paper examines challenges related to one-way attack drones and explores the potential of cognitive radar as a solution. The integration of ATR capabilities transforms a 3D radar system into a 4D radar system, resulting in improved drone detection performance. These advancements are useful in military, civilian, and commercial applications, and ongoing research and development efforts are essential to keep radar systems effective and ready to detect, track, and respond to emerging threats.Comment: 17 pages, 14 figures, submitted to a journal and being under revie
    • …
    corecore