1,330 research outputs found

    Features of cross-correlation analysis in a data-driven approach for structural damage assessment

    Get PDF
    This work discusses the advantage of using cross-correlation analysis in a data-driven approach based on principal component analysis (PCA) and piezodiagnostics to obtain successful diagnosis of events in structural health monitoring (SHM). In this sense, the identification of noisy data and outliers, as well as the management of data cleansing stages can be facilitated through the implementation of a preprocessing stage based on cross-correlation functions. Additionally, this work evidences an improvement in damage detection when the cross-correlation is included as part of the whole damage assessment approach. The proposed methodology is validated by processing data measurements from piezoelectric devices (PZT), which are used in a piezodiagnostics approach based on PCA and baseline modeling. Thus, the influence of cross-correlation analysis used in the preprocessing stage is evaluated for damage detection by means of statistical plots and self-organizing maps. Three laboratory specimens were used as test structures in order to demonstrate the validity of the methodology: (i) a carbon steel pipe section with leak and mass damage types, (ii) an aircraft wing specimen, and (iii) a blade of a commercial aircraft turbine, where damages are specified as mass-added. As the main concluding remark, the suitability of cross-correlation features combined with a PCA-based piezodiagnostic approach in order to achieve a more robust damage assessment algorithm is verified for SHM tasks.Peer ReviewedPostprint (published version

    Assessing the Technical Specifications of Predictive Maintenance: A Case Study of Centrifugal Compressor

    Get PDF
    Dependability analyses in the design phase are common in IEC 60300 standards to assess the reliability, risk, maintainability, and maintenance supportability of specific physical assets. Reliability and risk assessment uses well-known methods such as failure modes, effects, and criticality analysis (FMECA), fault tree analysis (FTA), and event tree analysis (ETA)to identify critical components and failure modes based on failure rate, severity, and detectability. Monitoring technology has evolved over time, and a new method of failure mode and symptom analysis (FMSA) was introduced in ISO 13379-1 to identify the critical symptoms and descriptors of failure mechanisms. FMSA is used to estimate monitoring priority, and this helps to determine the critical monitoring specifications. However, FMSA cannot determine the effectiveness of technical specifications that are essential for predictive maintenance, such as detection techniques (capability and coverage), diagnosis (fault type, location, and severity), or prognosis (precision and predictive horizon). The paper proposes a novel predictive maintenance (PdM) assessment matrix to overcome these problems, which is tested using a case study of a centrifugal compressor and validated using empirical data provided by the case study company. The paper also demonstrates the possible enhancements introduced by Industry 4.0 technologies.publishedVersio

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Classification of Wind Turbine Blade Performance State Through Statistical Methods

    Get PDF
    As wind turbines continue to age, wind farm operators face the challenge of optimizing maintenance scheduling to reduce the associated operation and maintenance (O&M) costs. Wind farm operators typically use conservative maintenance scheduling in order to maximize the uptime of their wind turbines. In most cases however, maintenance may not be necessary and the components could operate for longer before repairs are required. This work presents three papers that collectively focus on providing potentially useful information to aid wind farm operators in making maintenance decisions. In the first paper, the utilization of Geographic Information Systems (GIS) to illustrate data trends across wind farms is introduced to better understand an operation’s signature performance characteristics. It is followed by a paper that presents an improved condition monitoring system for the wind turbine blades through the use of the principal component analysis (PCA). The final paper introduces another condition monitoring system using a k-means clustering algorithm to determine the performance state of wind turbine blades

    Algorithms for Fault Detection and Diagnosis

    Get PDF
    Due to the increasing demand for security and reliability in manufacturing and mechatronic systems, early detection and diagnosis of faults are key points to reduce economic losses caused by unscheduled maintenance and downtimes, to increase safety, to prevent the endangerment of human beings involved in the process operations and to improve reliability and availability of autonomous systems. The development of algorithms for health monitoring and fault and anomaly detection, capable of the early detection, isolation, or even prediction of technical component malfunctioning, is becoming more and more crucial in this context. This Special Issue is devoted to new research efforts and results concerning recent advances and challenges in the application of “Algorithms for Fault Detection and Diagnosis”, articulated over a wide range of sectors. The aim is to provide a collection of some of the current state-of-the-art algorithms within this context, together with new advanced theoretical solutions

    Automated neural network-based instrument validation system

    Get PDF
    In a complex control process, instrument calibration is periodically performed to maintain the instruments within the calibration range, which assures proper control and minimizes down time. Instruments are usually calibrated under out-of-service conditions using manual calibration methods, which may cause incorrect calibration or equipment damage. Continuous in-service calibration monitoring of sensors and instruments will reduce unnecessary instrument calibrations, give operators more confidence in instrument measurements, increase plant efficiency or product quality, and minimize the possibility of equipment damage during unnecessary manual calibrations. In this dissertation, an artificial neural network (ANN)-based instrument calibration verification system is designed to achieve the on-line monitoring and verification goal for scheduling maintenance. Since an ANN is a data-driven model, it can learn the relationships among signals without prior knowledge of the physical model or process, which is usually difficult to establish for the complex hon-linear systems. Furthermore, the ANNs provide a noise-reduced estimate of the signal measurement. More importantly, since a neural network learns the relationships among signals, it can give an unfaulted estimate of a faulty signal based on information provided by other unfaulted signals; that is, provide a correct estimate of a faulty signal. This ANN-based instrument verification system is capable of detecting small degradations or drifts occurring in instrumentation, and preclude false control actions or system damage caused by instrument degradation. In this dissertation, an automated scheme of neural network construction is developed. Previously, the neural network structure design required extensive knowledge of neural networks. An automated design methodology was developed so that a network structure can be created without expert interaction. This validation system was designed to monitor process sensors plant-wide. Due to the large number of sensors to be monitored and the limited computational capability of an artificial neural network model, a variable grouping process was developed for dividing the sensor variables into small correlated groups which the neural networks can handle. A modification of a statistical method, called Beta method, as well as a principal component analysis (PCA)-based method of estimating the number of neural network hidden nodes was developed. Another development in this dissertation is the sensor fault detection method. The commonly used Sequential Probability Ratio Test (SPRT) continuously measures the likelihood ratio to statistically determine if there is any significant calibration change. This method requires normally distributed signals for correct operation. In practice, the signals deviate from the normal distribution causing problems for the SPRT. A modified SPRT (MSPRT) was developed to suppress the possible intermittent alarms initiated by spurious spikes in network prediction errors. These methods were applied to data from the Tennessee Valley Authority (TVA) fossil power plant Unit 9 for testing. The results show that the average detectable drift level is about 2.5% for instruments in the boiler system and about 1% in the turbine system of the Unit 9 system. Approximately 74% of the process instruments can be monitored using the methodologies developed in this dissertation
    corecore