407 research outputs found

    Fuzzy PD control of an optically guided long reach robot

    Get PDF
    This thesis describes the investigation and development of a fuzzy controller for a manipulator with a single flexible link. The novelty of this research is due to the fact that the controller devised is suitable for flexible link manipulators with a round cross section. Previous research has concentrated on control of flexible slender structures that are relatively easier to model as the vibration effects of torsion can be ignored. Further novelty arises due to the fact that this is the first instance of the application of fuzzy control in the optical Tip Feedback Sensor (TFS) based configuration. A design methodology has been investigated to develop a fuzzy controller suitable for application in a safety critical environment such as the nuclear industry. This methodology provides justification for all the parameters of the fuzzy controller including membership fUllctions, inference and defuzzification techniques and the operators used in the algorithm. Using the novel modified phase plane method investigated in this thesis, it is shown that the derivation of complete, consistent and non-interactive rules can be achieved. This methodology was successfully applied to the derivation of fuzzy rules even when the arm was subjected to different payloads. The design approach, that targeted real-time embedded control applicat.ions from the outset, results in a controller implementation that is suitable for cheaper CPU constrained and memory challenged embedded processors. The controller comprises of a fuzzy supervisor that is used to alter the derivative term of a linear classical Proportional + Derivative (PD) controller. The derivative term is updated in relation to the measured tip error and its derivative obtained through the TFS based configuration. It is shown that by adding 'intelligence' to the control loop in this way, the performance envelope of the classical controller can be enhanced. A 128% increase in payload, 73.5% faster settling time and a reduction of steady state of over 50% is achieved using fuzzy control over its classical counterpart

    Control of mechanical systems with backlash problem

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Robust contact force controller for slip prevention in a robotic gripper

    Get PDF
    Grasping a soft or fragile object requires the use of minimum contact force to prevent damage or deformation. Without precise knowledge of object parameters, real-time feedback control must be used with a suitable slip sensor to regulate the contact force and prevent slip. Furthermore, the controller must be designed to have good performance characteristics to rapidly modulate the fingertip contact force in response to a slip event. In this paper, a fuzzy sliding mode controller combined with a disturbance observer is proposed for contact force control and slip prevention. The controller is based on a system model that is suitable for a wide class of robotic gripper configurations. The robustness of the controller is evaluated through both simulation and experiment. The control scheme was found to be effective and robust to parameter uncertainty. When tested on a real system, however, chattering phenomena, well known to sliding mode research, was induced by the unmodelled suboptimal components of the system (filtering, backlash, and time delays), and the controller performance was reduced

    Digital twin-based Optimization on the basis of Grey Wolf Method. A Case Study on Motion Control Systems

    Get PDF
    Nowadays, digital twins are fostering the development of plug, simulate and optimize behavior in industrial cyber-physical systems. This paper presents a digital twin-based optimization of a motion system on the basis of a grey wolf optimization (GWO) method. The digital twin of the whole ultraprecision motion system with friction and backlash including a P-PI cascade controller is used as a basement to minimize the maximum position error. The simulation study and the real-time experiments in trajectory control are performed to compare the performance of the proposed GWO algorithm and the industrial method called Fine tune (FT) method. The simulation study shows that the digital twin-based optimization using GWO outperformed FT method with improvement of 66.4% in the reduction of the maximum position error. The real-time experimental results obtained show also the advantage of GWO method with 18% of improvement in the maximum peak error and 16% in accuracy

    Design and construction of a portable force-reflecting manual controller for teleoperation systems

    Get PDF
    A man-machine system called teleoperator system has been developed to work in hazardous environments such as nuclear reactor plants. Force reflection is a type of force feedback in which forces experienced by the remote manipulator are fed back to the manual controller. In a force-reflecting teleoperation system, the operator uses the manual controller to direct the remote manipulator and receives visual information from a video image and/or graphical animation on the computer screen. This thesis presents the design of a portable Force-Reflecting Manual Controller (FRMC) for the teleoperation of tasks such as hazardous material handling, waste cleanup, and space-related operations. The work consists of the design and construction of a prototype 1-Degree-of-Freedom (DOF) FRMC, the development of the Graphical User Interface (GUI), and system integration. Two control strategies - PID and fuzzy logic controllers are developed and experimentally tested. The system response of each is analyzed and evaluated. In addition, the concept of a telesensation system is introduced, and a variety of design alternatives of a 3-DOF FRMC are proposed for future development

    Artificial intelligent based friction modelling and compensation in motion control system

    Get PDF
    The interest in the study of friction in control engineering has been driven by the need for 10 precise motion control in most of industrial applications such as machine tools, robot 11 systems, semiconductor manufacturing systems and Mechatronics systems. Friction has 12 been experimentally shown to be a major factor in performance degradation in various 13 control tasks. Among the prominent effects of friction in motion control are: steady state 14 error to a reference command, slow response, periodic process of sticking and sliding (stick-15 slip) motion, as well as periodic oscillations about a reference point known as hunting when 16 an integral control is employed in the control scheme. Table 1 shows the effects and type of 17 friction as highlighted by Armstrong et. al.(1994). It is observed that, each of task is 18 dominated by at least one friction effect ranging from stiction, or/and kinetic to negative 19 friction (Stribeck). Hence, the need for accurate compensation of friction has become 20 important in high precision motion control. Several techniques to alleviate the effects of 21 friction have been reported in the literature (Dupont and Armstrong, 1993; Wahyudi, 2003; 22 Tjahjowidodo, 2004; Canudas, et. al., 1986). 23 One of the successful methods is the well-known model-based friction compensation 24 (Armstrong et al., 1994; Canudas de Wit et al., 1995 and Wen-Fang, 2007). In this method, 25 the effect of the friction is cancelled by applying additional control signal which generates a 26 torque/force. The generated torque/force has the same value (or approximately the same) 27 with the friction torque/force but in opposite direction

    DESIGN AND CONSTRUCTION OF A FORCE-REFLECTING TELEOPERATION SYSTEM

    Full text link

    Time Domain Simulation of a Target Tracking System with Backlash Compensation

    Get PDF
    This paper presents a model of a target tracking system assembled in a moving body. The system is modeled in time domain as a nonlinear system, which includes dry friction, backlash in gear transmission, control input tensions saturation, and armature current saturation. Time delays usually present in digital controllers are also included, and independent control channels are used for each motor. Their inputs are the targets angular errors with respect to the system axial axis and the outputs are control tensions for the motors. Since backlash in gear transmission may reduce the systems accuracy, its effects should be compensated. For that, backlash compensation blocks are added in the controllers. Each section of this paper contains a literature survey of recent works dealing with the issues discussed in this article

    Control of out of balance servo mechanism subjected to external disturbances

    Get PDF
    There is a category of applications where cantilevered servomechanisms mounted on mobile platforms have to maintain very precise position in inertial space. These systems often referred to as stabilised or line of sight systems have to maintain precise orientation in inertial space in presence of linear and angular external disturbances. Stabilised systems, in general, are designed as balanced systems such that the pivot or centre of rotation coincides with the centre of gravity of the equipment. The research presented in this thesis investigates a general case of stabilising an out-of-balance mechanism; a balanced mechanism is a special case of these systems. The motivation for the research is to remove the requirement for balanced mechanisms enabling engineers to design more effective systems, both in terms of performance and costs, for future needs... cont'd
    corecore