2,223 research outputs found

    An Artificial Neural Network Embedded Position and Orientation Determination Algorithm for Low Cost MEMS INS/GPS Integrated Sensors

    Get PDF
    Digital mobile mapping, which integrates digital imaging with direct geo-referencing, has developed rapidly over the past fifteen years. Direct geo-referencing is the determination of the time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using Global Positioning System (GPS) and Inertial Navigation System (INS) using an Inertial Measurement Unit (IMU). They are usually integrated in such a way that the GPS receiver is the main position sensor, while the IMU is the main orientation sensor. The Kalman Filter (KF) is considered as the optimal estimation tool for real-time INS/GPS integrated kinematic position and orientation determination. An intelligent hybrid scheme consisting of an Artificial Neural Network (ANN) and KF has been proposed to overcome the limitations of KF and to improve the performance of the INS/GPS integrated system in previous studies. However, the accuracy requirements of general mobile mapping applications can’t be achieved easily, even by the use of the ANN-KF scheme. Therefore, this study proposes an intelligent position and orientation determination scheme that embeds ANN with conventional Rauch-Tung-Striebel (RTS) smoother to improve the overall accuracy of a MEMS INS/GPS integrated system in post-mission mode. By combining the Micro Electro Mechanical Systems (MEMS) INS/GPS integrated system and the intelligent ANN-RTS smoother scheme proposed in this study, a cheaper but still reasonably accurate position and orientation determination scheme can be anticipated

    Design of real time intelligent buses notification system for passengers

    Get PDF
    Waiting passengers at bus stops for their desired buses seems a commonly observed phenomenon. The obvious reason behind is increased personal vehicle, causing traffic jams. The requirement of a reliable public transport monitoring system is actually the outcome from this unnecessary congestion of traffic observed. Since most of the modern technologies for the Intelligent Transportation System (ITS) have developed since more than 15 years. The need of a Global Positioning/ inertial (GPS/INS) augmentation with a reliable communication system stems from the shortcomings of each individual technology. Besides further advancement, the researchers are now developing implementable technologies for the ease of mankind so that problems related to daily life could be solved. In this dissertation, a new real time intelligent public transport movement monitoring system and station reporting based on GPS and succession of RF Radio Chips is presented. From the societal perspective, the major apprehension of this research, under the framework of a public transit network with bus service providers and users, presents detailed technical solutions for different buses' routes with poles apart IDs using multi technologies applied. GPS is selected to achieve the position data. In order to build the most convenient and reliable system, map matching for location data comparison using optimization technique, Design of Experiment (DOE) is applied. Using the techniques, one single route’s coordinates are optimized to single equation, whose output is the bus stop number in accordance to the bus stop coordinates received. The equation is obtained after a number of run through simulation and then successfully trained to the MCU. Road networks are one of the important surveillance tools in the proposed transport navigation system. In the proposed system, a careful and implementable deployment (hundreds of meters apart) of the ranging sensors is suggested for the cost-effective multi ID buses information at their particular bus stops. These are made configured to create a dedicated network for individual bus ID. Thereby, the extraordinary quality can be shown which is realized by the described algorithms. The experimental results show the promising outcomes. The statistical analysis of equation provides up to 98% efficiency while the designed prototype showed a remarkable agreement between the simulated and actual results. The proposed system surely have the ability to improve the comfortable visibility of moving vehicle at another node as well its smooth and linear transmission to the bus stations by sophisticated transceiver modules, which led people to take a decision either to wait for bus or not. This system can also be supportive to change the trend of people from using their own vehicles to public transport, which lead to solve major problem related to energy consumption, environment and traffic congestio

    Information Aided Navigation: A Review

    Full text link
    The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.Comment: 8 figures, 3 table

    A Comprehensive Review of the GNSS with IoT Applications and Their Use Cases with Special Emphasis on Machine Learning and Deep Learning Models

    Get PDF
    This paper presents a comprehensive review of the Global Navigation Satellite System (GNSS) with Internet of Things (IoT) applications and their use cases with special emphasis on Machine learning (ML) and Deep Learning (DL) models. Various factors like the availability of a huge amount of GNSS data due to the increasing number of interconnected devices having low-cost data storage and low-power processing technologies - which is majorly due to the evolution of IoT - have accelerated the use of machine learning and deep learning based algorithms in the GNSS community. IoT and GNSS technology can track almost any item possible. Smart cities are being developed with the use of GNSS and IoT. This survey paper primarily reviews several machine learning and deep learning algorithms and solutions applied to various GNSS use cases that are especially helpful in providing accurate and seamless navigation solutions in urban areas. Multipath, signal outages with less satellite visibility, and lost communication links are major challenges that hinder the navigation process in crowded areas like cities and dense forests. The advantages and disadvantages of using machine learning techniques are also highlighted along with their potential applications with GNSS and IoT

    Infrastructure Wi-Fi for connected autonomous vehicle positioning : a review of the state-of-the-art

    Get PDF
    In order to realize intelligent vehicular transport networks and self driving cars, connected autonomous vehicles (CAVs) are required to be able to estimate their position to the nearest centimeter. Traditional positioning in CAVs is realized by using a global navigation satellite system (GNSS) such as global positioning system (GPS) or by fusing weighted location parameters from a GNSS with an inertial navigation systems (INSs). In urban environments where Wi-Fi coverage is ubiquitous and GNSS signals experience signal blockage, multipath or non line-of-sight (NLOS) propagation, enterprise or carrier-grade Wi-Fi networks can be opportunistically used for localization or “fused” with GNSS to improve the localization accuracy and precision. While GNSS-free localization systems are in the literature, a survey of vehicle localization from the perspective of a Wi-Fi anchor/infrastructure is limited. Consequently, this review seeks to investigate recent technological advances relating to positioning techniques between an ego vehicle and a vehicular network infrastructure. Also discussed in this paper is an analysis of the location accuracy, complexity and applicability of surveyed literature with respect to intelligent transportation system requirements for CAVs. It is envisaged that hybrid vehicular localization systems will enable pervasive localization services for CAVs as they travel through urban canyons, dense foliage or multi-story car parks

    Collaborative navigation as a solution for PNT applications in GNSS challenged environments: report on field trials of a joint FIG / IAG working group

    Get PDF
    PNT stands for Positioning, Navigation, and Timing. Space-based PNT refers to the capabilities enabled by GNSS, and enhanced by Ground and Space-based Augmentation Systems (GBAS and SBAS), which provide position, velocity, and timing information to an unlimited number of users around the world, allowing every user to operate in the same reference system and timing standard. Such information has become increasingly critical to the security, safety, prosperity, and overall qualityof-life of many citizens. As a result, space-based PNT is now widely recognized as an essential element of the global information infrastructure. This paper discusses the importance of the availability and continuity of PNT information, whose application, scope and significance have exploded in the past 10–15 years. A paradigm shift in the navigation solution has been observed in recent years. It has been manifested by an evolution from traditional single sensor-based solutions, to multiple sensor-based solutions and ultimately to collaborative navigation and layered sensing, using non-traditional sensors and techniques – so called signals of opportunity. A joint working group under the auspices of the International Federation of Surveyors (FIG) and the International Association of Geodesy (IAG), entitled ‘Ubiquitous Positioning Systems’ investigated the use of Collaborative Positioning (CP) through several field trials over the past four years. In this paper, the concept of CP is discussed in detail and selected results of these experiments are presented. It is demonstrated here, that CP is a viable solution if a ‘network’ or ‘neighbourhood’ of users is to be positioned / navigated together, as it increases the accuracy, integrity, availability, and continuity of the PNT information for all users
    • 

    corecore