15,652 research outputs found

    Estimating Sensor Motion from Wide-Field Optical Flow on a Log-Dipolar Sensor

    Full text link
    Log-polar image architectures, motivated by the structure of the human visual field, have long been investigated in computer vision for use in estimating motion parameters from an optical flow vector field. Practical problems with this approach have been: (i) dependence on assumed alignment of the visual and motion axes; (ii) sensitivity to occlusion form moving and stationary objects in the central visual field, where much of the numerical sensitivity is concentrated; and (iii) inaccuracy of the log-polar architecture (which is an approximation to the central 20°) for wide-field biological vision. In the present paper, we show that an algorithm based on generalization of the log-polar architecture; termed the log-dipolar sensor, provides a large improvement in performance relative to the usual log-polar sampling. Specifically, our algorithm: (i) is tolerant of large misalignmnet of the optical and motion axes; (ii) is insensitive to significant occlusion by objects of unknown motion; and (iii) represents a more correct analogy to the wide-field structure of human vision. Using the Helmholtz-Hodge decomposition to estimate the optical flow vector field on a log-dipolar sensor, we demonstrate these advantages, using synthetic optical flow maps as well as natural image sequences

    A Software Retina for Egocentric & Robotic Vision Applications on Mobile Platforms

    Get PDF
    We present work in progress to develop a low-cost highly integrated camera sensor for egocentric and robotic vision. Our underlying approach is to address current limitations to image analysis by Deep Convolutional Neural Networks, such as the requirement to learn simple scale and rotation transformations, which contribute to the large computational demands for training and opaqueness of the learned structure, by applying structural constraints based on known properties of the human visual system. We propose to apply a version of the retino-cortical transform to reduce the dimensionality of the input image space by a factor of ex100, and map this spatially to transform rotations and scale changes into spatial shifts. By reducing the input image size accordingly, and therefore learning requirements, we aim to develop compact and lightweight egocentric and robot vision sensor using a smartphone as the target platfor

    The Local Structure of Space-Variant Images

    Full text link
    Local image structure is widely used in theories of both machine and biological vision. The form of the differential operators describing this structure for space-invariant images has been well documented (e.g. Koenderink, 1984). Although space-variant coordinates are universally used in mammalian visual systems, the form of the operators in the space-variant domain has received little attention. In this report we derive the form of the most common differential operators and surface characteristics in the space-variant domain and show examples of their use. The operators include the Laplacian, the gradient and the divergence, as well as the fundamental forms of the image treated as a surface. We illustrate the use of these results by deriving the space-variant form of corner detection and image enhancement algorithms. The latter is shown to have interesting properties in the complex log domain, implicitly encoding a variable grid-size integration of the underlying PDE, allowing rapid enhancement of large scale peripheral features while preserving high spatial frequencies in the fovea.Office of Naval Research (N00014-95-I-0409
    • …
    corecore