275 research outputs found

    Optimal fault-tolerant placement of relay nodes in a mission critical wireless network

    Get PDF
    The operations of many critical infrastructures (e.g., airports) heavily depend on proper functioning of the radio communication network supporting operations. As a result, such a communication network is indeed a mission-critical communication network that needs adequate protection from external electromagnetic interferences. This is usually done through radiogoniometers. Basically, by using at least three suitably deployed radiogoniometers and a gateway gathering information from them, sources of electromagnetic emissions that are not supposed to be present in the monitored area can be localised. Typically, relay nodes are used to connect radiogoniometers to the gateway. As a result, some degree of fault-tolerance for the network of relay nodes is essential in order to offer a reliable monitoring. On the other hand, deployment of relay nodes is typically quite expensive. As a result, we have two conflicting requirements: minimise costs while guaranteeing a given fault-tolerance. In this paper address the problem of computing a deployment for relay nodes that minimises the relay node network cost while at the same time guaranteeing proper working of the network even when some of the relay nodes (up to a given maximum number) become faulty (fault-tolerance). We show that the above problem can be formulated as a Mixed Integer Linear Programming (MILP) as well as a Pseudo-Boolean Satisfiability (PB-SAT) optimisation problem and present experimental results com- paring the two approaches on realistic scenarios

    Method for Optimal Sensor Deployment on 3D Terrains Utilizing a Steady State Genetic Algorithm with a Guided Walk Mutation Operator Based on the Wavelet Transform

    Get PDF
    One of the most critical issues of Wireless Sensor Networks (WSNs) is the deployment of a limited number of sensors in order to achieve maximum coverage on a terrain. The optimal sensor deployment which enables one to minimize the consumed energy, communication time and manpower for the maintenance of the network has attracted interest with the increased number of studies conducted on the subject in the last decade. Most of the studies in the literature today are proposed for two dimensional (2D) surfaces; however, real world sensor deployments often arise on three dimensional (3D) environments. In this paper, a guided wavelet transform (WT) based deployment strategy (WTDS) for 3D terrains, in which the sensor movements are carried out within the mutation phase of the genetic algorithms (GAs) is proposed. The proposed algorithm aims to maximize the Quality of Coverage (QoC) of a WSN via deploying a limited number of sensors on a 3D surface by utilizing a probabilistic sensing model and the Bresenham's line of sight (LOS) algorithm. In addition, the method followed in this paper is novel to the literature and the performance of the proposed algorithm is compared with the Delaunay Triangulation (DT) method as well as a standard genetic algorithm based method and the results reveal that the proposed method is a more powerful and more successful method for sensor deployment on 3D terrains

    A review on Artificial Bee Colony algorithm

    Full text link

    Bio-Inspired Load Balancing In Large-Scale WSNs Using Pheromone Signalling

    Get PDF
    Wireless sensor networks (WSNs) consist of multiple, distributed nodes each with limited resources. With their strict resource constraints and application-specific characteristics, WSNs contain many challenging tradeoffs. This paper proposes a bioinspired load balancing approach, based on pheromone signalling mechanisms, to solve the tradeoff between service availability and energy consumption. We explore the performance consequences of the pheromone-based load balancing approach using (1) a system-level simulator, (2) deployment of real sensor testbeds to provide a competitive analysis of these evaluation methodologies. The effectiveness of the proposed algorithm is evaluated with different scenario parameters and the required performance evaluation techniques are investigated on case studies based on sound sensors

    Wireless Sensor Networks for Building Robotic Paths - A Survey of Problems and Restrictions

    Get PDF
    The conjugation of small nodes with sensing, communication and processing capabilities allows for the creation of wireless sensor networks (WSNs). These networks can be deployed to measure a very wide range of environmental phenomena and send data from remote locations back to users. They offer new and exciting possibilities for applications and research. This paper presents the background of WSNs by firstly exploring the different fields applications, with examples for each of these fields, then the challenges faced by these networks in areas such as energy-efficiency, node localization, node deployment, limited storage and routing. It aims at explaining each issue and giving solutions that have been proposed in the research literature. Finally, the paper proposes a practical scenario of deploying a WSN by autonomous robot path construction. The requirements for such a scenario and the open issues that can be tackled by it are exposed, namely the issues of associated with measuring RSSI, the degree of autonomy of the robot and connectivity restoration.The authors would like to acknowledge the company Inspiring Sci, Lda for the interest and valuable contribution to the successful development of this work.info:eu-repo/semantics/publishedVersio
    • …
    corecore