54,838 research outputs found

    From Artifacts to Aggregations: Modeling Scientific Life Cycles on the Semantic Web

    Full text link
    In the process of scientific research, many information objects are generated, all of which may remain valuable indefinitely. However, artifacts such as instrument data and associated calibration information may have little value in isolation; their meaning is derived from their relationships to each other. Individual artifacts are best represented as components of a life cycle that is specific to a scientific research domain or project. Current cataloging practices do not describe objects at a sufficient level of granularity nor do they offer the globally persistent identifiers necessary to discover and manage scholarly products with World Wide Web standards. The Open Archives Initiative's Object Reuse and Exchange data model (OAI-ORE) meets these requirements. We demonstrate a conceptual implementation of OAI-ORE to represent the scientific life cycles of embedded networked sensor applications in seismology and environmental sciences. By establishing relationships between publications, data, and contextual research information, we illustrate how to obtain a richer and more realistic view of scientific practices. That view can facilitate new forms of scientific research and learning. Our analysis is framed by studies of scientific practices in a large, multi-disciplinary, multi-university science and engineering research center, the Center for Embedded Networked Sensing (CENS).Comment: 28 pages. To appear in the Journal of the American Society for Information Science and Technology (JASIST

    Oceans of Tomorrow sensor interoperability for in-situ ocean monitoring

    Get PDF
    The Oceans of Tomorrow (OoT) projects, funded by the European Commission’s FP7 program, are developing a new generation of sensors supporting physical, biogeochemical and biological oceanographic monitoring. The sensors range from acoustic to optical fluorometers to labs on a chip. The result is that the outputs are diverse in a variety of formats and communication methodologies. The interfaces with platforms such as floats, gliders and cable observatories are each different. Thus, sensorPeer ReviewedPostprint (author's final draft

    Finding Academic Experts on a MultiSensor Approach using Shannon's Entropy

    Full text link
    Expert finding is an information retrieval task concerned with the search for the most knowledgeable people, in some topic, with basis on documents describing peoples activities. The task involves taking a user query as input and returning a list of people sorted by their level of expertise regarding the user query. This paper introduces a novel approach for combining multiple estimators of expertise based on a multisensor data fusion framework together with the Dempster-Shafer theory of evidence and Shannon's entropy. More specifically, we defined three sensors which detect heterogeneous information derived from the textual contents, from the graph structure of the citation patterns for the community of experts, and from profile information about the academic experts. Given the evidences collected, each sensor may define different candidates as experts and consequently do not agree in a final ranking decision. To deal with these conflicts, we applied the Dempster-Shafer theory of evidence combined with Shannon's Entropy formula to fuse this information and come up with a more accurate and reliable final ranking list. Experiments made over two datasets of academic publications from the Computer Science domain attest for the adequacy of the proposed approach over the traditional state of the art approaches. We also made experiments against representative supervised state of the art algorithms. Results revealed that the proposed method achieved a similar performance when compared to these supervised techniques, confirming the capabilities of the proposed framework

    SciRecSys: A Recommendation System for Scientific Publication by Discovering Keyword Relationships

    Full text link
    In this work, we propose a new approach for discovering various relationships among keywords over the scientific publications based on a Markov Chain model. It is an important problem since keywords are the basic elements for representing abstract objects such as documents, user profiles, topics and many things else. Our model is very effective since it combines four important factors in scientific publications: content, publicity, impact and randomness. Particularly, a recommendation system (called SciRecSys) has been presented to support users to efficiently find out relevant articles

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    The use of gliders for oceanographic science: the data processing gap

    Get PDF
    Autonomous gliders represent a step change in the way oceanographic data can be collected and as such they are increasingly seen as valuable tools in the oceanographer’s arsenal. However, their increase in use has left a gap regarding the conversion of the signals that their sensors collect into scientifically useable data.At present the novelty of gliders means that only a few research groups within the UK are capable of processing glider data whilst the wider oceanographic community is often unaware that requesting deployment of a glider by MARS does not mean that they will be provided with fully processed and calibrated data following the deployment. This is not a failing of MARS – it is not in their remit – but it does mean that a solution is needed at the UK community level. The solution is also needed quickly given the rapidly growing glider fleet and requests to use it.To illustrate the far from trivial resources and issues needed to solve this problem at a community level, this document briefly summarises the resources and steps involved in carrying glider data through from collection to final product, for the glider owning research groups within the UK which have the capability.This report does not provide a recommendation on whether such a community facility should be the responsibility of NOC, BODC or MARS but does provide information on possible protocols and available software that could be part of a solution.This report does, however, recommend that, to support the growing use of the MARS gliders, a permanently staffed group is needed as a priority, to provide data processing and calibration necessary to allow the translation of glider missions into high impact scientific publications

    The status of textile-based dry EEG electrodes

    Get PDF
    Electroencephalogram (EEG) is the biopotential recording of electrical signals generated by brain activity. It is useful for monitoring sleep quality and alertness, clinical applications, diagnosis, and treatment of patients with epilepsy, disease of Parkinson and other neurological disorders, as well as continuous monitoring of tiredness/ alertness in the field. We provide a review of textile-based EEG. Most of the developed textile-based EEGs remain on shelves only as published research results due to a limitation of flexibility, stickability, and washability, although the respective authors of the works reported that signals were obtained comparable to standard EEG. In addition, nearly all published works were not quantitatively compared and contrasted with conventional wet electrodes to prove feasibility for the actual application. This scenario would probably continue to give a publication credit, but does not add to the growth of the specific field, unless otherwise new integration approaches and new conductive polymer composites are evolved to make the application of textile-based EEG happen for bio-potential monitoring
    • …
    corecore