75,555 research outputs found

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Near Real-Time Data Labeling Using a Depth Sensor for EMG Based Prosthetic Arms

    Full text link
    Recognizing sEMG (Surface Electromyography) signals belonging to a particular action (e.g., lateral arm raise) automatically is a challenging task as EMG signals themselves have a lot of variation even for the same action due to several factors. To overcome this issue, there should be a proper separation which indicates similar patterns repetitively for a particular action in raw signals. A repetitive pattern is not always matched because the same action can be carried out with different time duration. Thus, a depth sensor (Kinect) was used for pattern identification where three joint angles were recording continuously which is clearly separable for a particular action while recording sEMG signals. To Segment out a repetitive pattern in angle data, MDTW (Moving Dynamic Time Warping) approach is introduced. This technique is allowed to retrieve suspected motion of interest from raw signals. MDTW based on DTW algorithm, but it will be moving through the whole dataset in a pre-defined manner which is capable of picking up almost all the suspected segments inside a given dataset an optimal way. Elevated bicep curl and lateral arm raise movements are taken as motions of interest to show how the proposed technique can be employed to achieve auto identification and labelling. The full implementation is available at https://github.com/GPrathap/OpenBCIPytho

    Frequency based Classification of Activities using Accelerometer Data

    Full text link
    This work presents, the classification of user activities such as Rest, Walk and Run, on the basis of frequency component present in the acceleration data in a wireless sensor network environment. As the frequencies of the above mentioned activities differ slightly for different person, so it gives a more accurate result. The algorithm uses just one parameter i.e. the frequency of the body acceleration data of the three axes for classifying the activities in a set of data. The algorithm includes a normalization step and hence there is no need to set a different value of threshold value for magnitude for different test person. The classification is automatic and done on a block by block basis.Comment: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI 200

    Detection of postural transitions using machine learning

    Get PDF
    The purpose of this project is to study the nature of human activity recognition and prepare a dataset from volunteers doing various activities which can be used for constructing the various parts of a machine learning model which is used to identify each volunteers posture transitions accurately. This report presents the problem definition, equipment used, previous work in this area of human activity recognition and the resolution of the problem along with results. Also this report sheds light on the process and the steps taken to undertake this endeavour of human activity recognition such as building of a dataset, pre-processing the data by applying filters and various windowing length techniques, splitting the data into training and testing data, performance of feature selection and feature extraction and finally selecting the model for training and testing which provides maximum accuracy and least misclassification rates. The tools used for this project includes a laptop equipped with MATLAB and EXCEL and MEDIA PLAYER CLASSIC respectively which have been used for data processing, model training and feature selection and Labelling respectively. The data has been collected using an Inertial Measurement Unit contains 3 tri-axial Accelerometers, 1 Gyroscope, 1 Magnetometer and 1 Pressure sensor. For this project only the Accelerometers, Gyroscope and the Pressure sensor is used. The sensor is made by the members of the lab named ‘The Technical Research Centre for Dependency Care and Autonomous Living (CETpD) at the UPC-ETSEIB campus. The results obtained have been satisfactory, and the objectives set have been fulfilled. There is room for possible improvements through expanding the scope of the project such as detection of chronic disorders or providing posture based statistics to the end user or even just achieving a higher rate of sensitivity of transitions of posture by using better features and increasing the dataset size by increasing the number of volunteers.Incomin

    Convolutional Neural Network for Stereotypical Motor Movement Detection in Autism

    Get PDF
    Autism Spectrum Disorders (ASDs) are often associated with specific atypical postural or motor behaviors, of which Stereotypical Motor Movements (SMMs) have a specific visibility. While the identification and the quantification of SMM patterns remain complex, its automation would provide support to accurate tuning of the intervention in the therapy of autism. Therefore, it is essential to develop automatic SMM detection systems in a real world setting, taking care of strong inter-subject and intra-subject variability. Wireless accelerometer sensing technology can provide a valid infrastructure for real-time SMM detection, however such variability remains a problem also for machine learning methods, in particular whenever handcrafted features extracted from accelerometer signal are considered. Here, we propose to employ the deep learning paradigm in order to learn discriminating features from multi-sensor accelerometer signals. Our results provide preliminary evidence that feature learning and transfer learning embedded in the deep architecture achieve higher accurate SMM detectors in longitudinal scenarios.Comment: Presented at 5th NIPS Workshop on Machine Learning and Interpretation in Neuroimaging (MLINI), 2015, (http://arxiv.org/html/1605.04435), Report-no: MLINI/2015/1
    • …
    corecore