380 research outputs found

    Hypermobile Robots

    Get PDF

    PHALANX: Expendable Projectile Sensor Networks for Planetary Exploration

    Get PDF
    Technologies enabling long-term, wide-ranging measurement in hard-to-reach areas are a critical need for planetary science inquiry. Phenomena of interest include flows or variations in volatiles, gas composition or concentration, particulate density, or even simply temperature. Improved measurement of these processes enables understanding of exotic geologies and distributions or correlating indicators of trapped water or biological activity. However, such data is often needed in unsafe areas such as caves, lava tubes, or steep ravines not easily reached by current spacecraft and planetary robots. To address this capability gap, we have developed miniaturized, expendable sensors which can be ballistically lobbed from a robotic rover or static lander - or even dropped during a flyover. These projectiles can perform sensing during flight and after anchoring to terrain features. By augmenting exploration systems with these sensors, we can extend situational awareness, perform long-duration monitoring, and reduce utilization of primary mobility resources, all of which are crucial in surface missions. We call the integrated payload that includes a cold gas launcher, smart projectiles, planning software, network discovery, and science sensing: PHALANX. In this paper, we introduce the mission architecture for PHALANX and describe an exploration concept that pairs projectile sensors with a rover mothership. Science use cases explored include reconnaissance using ballistic cameras, volatiles detection, and building timelapse maps of temperature and illumination conditions. Strategies to autonomously coordinate constellations of deployed sensors to self-discover and localize with peer ranging (i.e. a local GPS) are summarized, thus providing communications infrastructure beyond-line-of-sight (BLOS) of the rover. Capabilities were demonstrated through both simulation and physical testing with a terrestrial prototype. The approach to developing a terrestrial prototype is discussed, including design of the launching mechanism, projectile optimization, micro-electronics fabrication, and sensor selection. Results from early testing and characterization of commercial-off-the-shelf (COTS) components are reported. Nodes were subjected to successful burn-in tests over 48 hours at full logging duty cycle. Integrated field tests were conducted in the Roverscape, a half-acre planetary analog environment at NASA Ames, where we tested up to 10 sensor nodes simultaneously coordinating with an exploration rover. Ranging accuracy has been demonstrated to be within +/-10cm over 20m using commodity radios when compared to high-resolution laser scanner ground truthing. Evolution of the design, including progressive miniaturization of the electronics and iterated modifications of the enclosure housing for streamlining and optimized radio performance are described. Finally, lessons learned to date, gaps toward eventual flight mission implementation, and continuing future development plans are discussed

    Diseño y construcción de un robot tipo serpiente que implementa movimientos de marcha rectilínea y sidewinding

    Get PDF
    Bio-inspired robots offer locomotion versatility in a wide variety of terrains that conventional robots cannot access.  One such bio-inspired platform is snake-like robots, which are mechanisms designed to move like biological snakes. The aim of this paper was to implement and validate, through comparison in real and simulation tests on flat terrain, the design of a snake robot that allows movements in two perpendicular planes, by the application of three-dimensional locomotion modes. The prototype robot had a modular and sequential architecture composed of eight 3D printed segments. The necessary torques for each motor are found by means of a simulation in Matlab – Simulink and the SimScape tool. The Webots mobile robotics simulator was used to create a parameterized virtual model of the robot, where two types of gaits were programmed: sidewinding and rectilinear. Results showed that the robot undertakes lower than 1 second in execution time to reach the total distance in each of the proposed marches when comparted to the simulation. In addition, mean differences of 6 cm for the distances during the sidewinding mode experiment and 1.2 cm in the deviation in the rectilinear mode on flat terrain were obtained. In conclusion, there is a great similarity between the simulation tests and those performed with the actual robot, and it was also possible to verify that the behavior of the prototype robot is satisfactory over short distances.Los robots bioinspirados ofrecen versatilidad de locomoción en una amplia variedad de terrenos a los que los robots convencionales no pueden acceder. Una de esas plataformas bioinspiradas son los robots con forma de serpiente, que son mecanismos diseñados para moverse como serpientes biológicas. El objetivo de este artículo fue implementar y validar, mediante la comparación en pruebas reales y de simulación sobre un terreno llano, el diseño de un robot serpiente que permite movimientos en dos planos perpendiculares mediante la aplicación de modos tridimensionales de locomoción. El prototipo del robot contó con una arquitectura modular y secuencial compuesto por ocho segmentos impresos en 3D. Los pares necesarios para cada motor se encuentran mediante una simulación en Matlab – Simulink y la herramienta SimScape. El simulador de robótica móvil Webots se utilizó para crear un modelo virtual parametrizado del robot, donde se programaron dos tipos de marcha: sidewinding y rectilínea. Los resultados mostraron que el comportamiento del robot evidencia valores menores a 1 segundo en el tiempo de ejecución para alcanzar la distancia total en cada una de las marchas propuestas en comparación con la simulación. Además, se obtuvieron diferencias en promedio de 6 cm para las distancias durante el experimento del modo sidewinding y de 1.2 cm en el desvió rectilíneo sobre un terreno plano. En conclusión, existe una gran similitud entre las pruebas de simulación y las realizadas al robot real; igualmente se pudo verificar que el comportamiento del prototipo del robot es satisfactorio en recorridos cortos

    A behaviour-based control architecture for heterogeneous modular, multi-configurable, chained micro-robots

    Get PDF
    This article presents a new control architecture designed for heterogeneous modular, multi-configurable, chained micro-robots. This architecture attempts to fill the gap that exists in heterogeneous modular robotics research, in which little work has been conducted compared to that in homogeneous modular robotics studies. The architecture proposes a three-layer structure with a behaviour-based, low-level embedded layer, a half-deliberative half-behaviour-based high layer for the central control, and a heterogeneous middle layer acting as a bridge between these two layers. This middle layer is very important because it allows the central control to treat all modules in the same manner, facilitating the control of the robot. A communication protocol and a module description language were also developed for the control architecture to facilitate communication and information flow between the heterogeneous modules and the central control. Owing to the heterogeneous behaviour of the architecture, the system can automatically reconfigure its actions to adapt to unpredicted events (such as actuator failure). Several behaviours (at low and high levels) are also presented here.The research leading to these results has received funding from RoboCity2030-II-CM (S2009/DPI-1559), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds os the EUPublicad

    Modeling, simulation and control of microrobots for the microfactory.

    Get PDF
    Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large quantities of components, and the high cost associated with top-down manipulation requiring precision. However, bottom-up manufacturing methods have certain limitations, such as components needing to have predefined shapes and surface coatings, and the number of assembly components being limited to very few. For example, in the case of self-assembly of nano-cubes with an origami design, post-assembly manipulation of cubes in large quantities and cost-efficiency is still challenging. In this thesis, we envision a new paradigm for nanoscale assembly, realized with the help of a wafer-scale microfactory containing large numbers of MEMS microrobots. These robots will work together to enhance the throughput of the factory, while their cost will be reduced when compared to conventional nanopositioners. To fulfill the microfactory vision, numerous challenges related to design, power, control, and nanoscale task completion by these microrobots must be overcome. In this work, we study two classes of microrobots for the microfactory: stationary microrobots and mobile microrobots. For the stationary microrobots in our microfactory application, we have designed and modeled two different types of microrobots, the AFAM (Articulated Four Axes Microrobot) and the SolarPede. The AFAM is a millimeter-size robotic arm working as a nanomanipulator for nanoparticles with four degrees of freedom, while the SolarPede is a light-powered centimeter-size robotic conveyor in the microfactory. For mobile microrobots, we have introduced the world’s first laser-driven micrometer-size locomotor in dry environments, called ChevBot to prove the concept of the motion mechanism. The ChevBot is fabricated using MEMS technology in the cleanroom, following a microassembly step. We showed that it can perform locomotion with pulsed laser energy on a dry surface. Based on the knowledge gained with the ChevBot, we refined tits fabrication process to remove the assembly step and increase its reliability. We designed and fabricated a steerable microrobot, the SerpenBot, in order to achieve controllable behavior with the guidance of a laser beam. Through modeling and experimental study of the characteristics of this type of microrobot, we proposed and validated a new type of deep learning controller, the PID-Bayes neural network controller. The experiments showed that the SerpenBot can achieve closed-loop autonomous operation on a dry substrate
    • …
    corecore