7 research outputs found

    Adding Value by Combining Business and Sensor Data: An Industry 4.0 Use Case

    Full text link
    Industry 4.0 and the Internet of Things are recent developments that have lead to the creation of new kinds of manufacturing data. Linking this new kind of sensor data to traditional business information is crucial for enterprises to take advantage of the data's full potential. In this paper, we present a demo which allows experiencing this data integration, both vertically between technical and business contexts and horizontally along the value chain. The tool simulates a manufacturing company, continuously producing both business and sensor data, and supports issuing ad-hoc queries that answer specific questions related to the business. In order to adapt to different environments, users can configure sensor characteristics to their needs.Comment: Accepted at International Conference on Database Systems for Advanced Applications (DASFAA 2019

    Towards Using Data to Inform Decisions in Agile Software Development: Views of Available Data

    Full text link
    Software development comprises complex tasks which are performed by humans. It involves problem solving, domain understanding and communication skills as well as knowledge of a broad variety of technologies, architectures, and solution approaches. As such, software development projects include many situations where crucial decisions must be made. Making the appropriate organizational or technical choices for a given software team building a product can make the difference between project success or failure. Software development methods have introduced frameworks and sets of best practices for certain contexts, providing practitioners with established guidelines for these important choices. Current Agile methods employed in modern software development have highlighted the importance of the human factors in software development. These methods rely on short feedback loops and the self-organization of teams to enable collaborative decision making. While Agile methods stress the importance of empirical process control, i.e. relying on data to make decisions, they do not prescribe in detail how this goal should be achieved. In this paper, we describe the types and abstraction levels of data and decisions within modern software development teams and identify the benefits that usage of this data enables. We argue that the principles of data-driven decision making are highly applicable, yet underused, in modern Agile software development

    Scalability Benchmarking of Cloud-Native Applications Applied to Event-Driven Microservices

    Get PDF
    Cloud-native applications constitute a recent trend for designing large-scale software systems. This thesis introduces the Theodolite benchmarking method, allowing researchers and practitioners to conduct empirical scalability evaluations of cloud-native applications, their frameworks, configurations, and deployments. The benchmarking method is applied to event-driven microservices, a specific type of cloud-native applications that employ distributed stream processing frameworks to scale with massive data volumes. Extensive experimental evaluations benchmark and compare the scalability of various stream processing frameworks under different configurations and deployments, including different public and private cloud environments. These experiments show that the presented benchmarking method provides statistically sound results in an adequate amount of time. In addition, three case studies demonstrate that the Theodolite benchmarking method can be applied to a wide range of applications beyond stream processing

    Development of a supervisory internet of things (IoT) system for factories of the future

    Full text link
    Big data is of great importance to stakeholders, including manufacturers, business partners, consumers, government. It leads to many benefits, including improving productivity and reducing the cost of products by using digitalised automation equipment and manufacturing information systems. Some other benefits include using social media to build the agile cooperation between suppliers and retailers, product designers and production engineers, timely tracking customers’ feedbacks, reducing environmental impacts by using Internet of Things (IoT) sensors to monitor energy consumption and noise level. However, manufacturing big data integration has been neglected. Many open-source big data software provides complicated capabilities to manage big data software for various data-driven applications for manufacturing. In this research, a manufacturing big data integration system, named as Data Control Module (DCM) has been designed and developed. The system can securely integrate data silos from various manufacturing systems and control the data for different manufacturing applications. Firstly, the architecture of manufacturing big data system has been proposed, including three parts: manufacturing data source, manufacturing big data ecosystem and manufacturing applications. Secondly, nine essential components have been identified in the big data ecosystem to build various manufacturing big data solutions. Thirdly, a conceptual framework is proposed based on the big data ecosystem for the aim of DCM. Moreover, the DCM has been designed and developed with the selected big data software to integrate all the three varieties of manufacturing data, including non-structured, semi-structured and structured. The DCM has been validated on three general manufacturing domains, including product design and development, production and business. The DCM cannot only be used for the legacy manufacturing software but may also be used in emerging areas such as digital twin and digital thread. The limitations of DCM have been analysed, and further research directions have also been discussed
    corecore