41,653 research outputs found

    Beyond Support in Two-Stage Variable Selection

    Full text link
    Numerous variable selection methods rely on a two-stage procedure, where a sparsity-inducing penalty is used in the first stage to predict the support, which is then conveyed to the second stage for estimation or inference purposes. In this framework, the first stage screens variables to find a set of possibly relevant variables and the second stage operates on this set of candidate variables, to improve estimation accuracy or to assess the uncertainty associated to the selection of variables. We advocate that more information can be conveyed from the first stage to the second one: we use the magnitude of the coefficients estimated in the first stage to define an adaptive penalty that is applied at the second stage. We give two examples of procedures that can benefit from the proposed transfer of information, in estimation and inference problems respectively. Extensive simulations demonstrate that this transfer is particularly efficient when each stage operates on distinct subsamples. This separation plays a crucial role for the computation of calibrated p-values, allowing to control the False Discovery Rate. In this setup, the proposed transfer results in sensitivity gains ranging from 50% to 100% compared to state-of-the-art

    Ridge Estimation of Inverse Covariance Matrices from High-Dimensional Data

    Full text link
    We study ridge estimation of the precision matrix in the high-dimensional setting where the number of variables is large relative to the sample size. We first review two archetypal ridge estimators and note that their utilized penalties do not coincide with common ridge penalties. Subsequently, starting from a common ridge penalty, analytic expressions are derived for two alternative ridge estimators of the precision matrix. The alternative estimators are compared to the archetypes with regard to eigenvalue shrinkage and risk. The alternatives are also compared to the graphical lasso within the context of graphical modeling. The comparisons may give reason to prefer the proposed alternative estimators

    Differential expression analysis with global network adjustment

    Get PDF
    <p>Background: Large-scale chromosomal deletions or other non-specific perturbations of the transcriptome can alter the expression of hundreds or thousands of genes, and it is of biological interest to understand which genes are most profoundly affected. We present a method for predicting a gene’s expression as a function of other genes thereby accounting for the effect of transcriptional regulation that confounds the identification of genes differentially expressed relative to a regulatory network. The challenge in constructing such models is that the number of possible regulator transcripts within a global network is on the order of thousands, and the number of biological samples is typically on the order of 10. Nevertheless, there are large gene expression databases that can be used to construct networks that could be helpful in modeling transcriptional regulation in smaller experiments.</p> <p>Results: We demonstrate a type of penalized regression model that can be estimated from large gene expression databases, and then applied to smaller experiments. The ridge parameter is selected by minimizing the cross-validation error of the predictions in the independent out-sample. This tends to increase the model stability and leads to a much greater degree of parameter shrinkage, but the resulting biased estimation is mitigated by a second round of regression. Nevertheless, the proposed computationally efficient “over-shrinkage” method outperforms previously used LASSO-based techniques. In two independent datasets, we find that the median proportion of explained variability in expression is approximately 25%, and this results in a substantial increase in the signal-to-noise ratio allowing more powerful inferences on differential gene expression leading to biologically intuitive findings. We also show that a large proportion of gene dependencies are conditional on the biological state, which would be impossible with standard differential expression methods.</p> <p>Conclusions: By adjusting for the effects of the global network on individual genes, both the sensitivity and reliability of differential expression measures are greatly improved.</p&gt

    Feature selection guided by structural information

    Get PDF
    In generalized linear regression problems with an abundant number of features, lasso-type regularization which imposes an 1\ell^1-constraint on the regression coefficients has become a widely established technique. Deficiencies of the lasso in certain scenarios, notably strongly correlated design, were unmasked when Zou and Hastie [J. Roy. Statist. Soc. Ser. B 67 (2005) 301--320] introduced the elastic net. In this paper we propose to extend the elastic net by admitting general nonnegative quadratic constraints as a second form of regularization. The generalized ridge-type constraint will typically make use of the known association structure of features, for example, by using temporal- or spatial closeness. We study properties of the resulting "structured elastic net" regression estimation procedure, including basic asymptotics and the issue of model selection consistency. In this vein, we provide an analog to the so-called "irrepresentable condition" which holds for the lasso. Moreover, we outline algorithmic solutions for the structured elastic net within the generalized linear model family. The rationale and the performance of our approach is illustrated by means of simulated and real world data, with a focus on signal regression.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS302 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On the potential of Cherenkov Telescope Arrays and KM3 Neutrino Telescopes for the detection of extended sources

    Full text link
    We discuss the discovery potential of extended very-high-energy (VHE) neutrino sources by the future KM3 Neutrino Telescope (KM3NeT) in the context of the constraining power of the Cherenkov Telescope Array (CTA), designed for deep surveys of the sky in VHE gamma rays. The study is based on a comparative analysis of sensitivities of KM3NeT and CTA. We show that a minimum gamma-ray energy flux of E^2{\phi}_{\gamma}(10 TeV) > 1x10^{-12} TeV cm^{-2} s^{-1} is required to identify a possible neutrino counterpart with a 3{\sigma} significance and 10 years of KM3NeT observations with upgoing muons, if the source has an angular size of R_{src} = 0.1 deg and emits gamma rays with an E^{-2} energy spectrum through a full hadronic mechanism. This minimum gamma-ray flux is increased to the level of E^2{\phi}_{\gamma}(10 TeV) > 2x10^{-11} TeV cm^{-2} s^{-1} in case of sources with radial extension of R_{src} = 2.0 deg. The analysis methods are applied to the supernova remnant RX J1713.7-3946 and the Galactic Center Ridge, as well as to the recent HAWC catalog of multi-TeV gamma-ray sources.Comment: 15 pages, 7 figure
    corecore